Hiding Secret Messages in Images

Souma Pal¹ and Prof. Samir Kumar Bandyopadhyay² ¹ Research Scholar, Department of Computer Science & Engineering, University of Calcutta, India pal.souma@yahoo.com ²Department of Computer Science & Engineering, University of Calcutta, India 1954samir@gmail.com

Abstract: Digital media offers several distinct advantages such as high quality, easy editing, high fidelity copying, compression etc. But this type advancement in the field of data communication in other sense has hiked the fear of getting the data snooped at the time of sending it from the sender to the receiver. So, Information Security is becoming an inseparable part of Data Communication. In order to address this Information Security, Steganography plays an important role. Steganography is the art and science of writing hidden messages in such a way that no one apart from the sender and intended recipient even realizes there is a hidden message. This paper reviewed of the steganography techniques appeared in the literature.

Keywords: Audio, Hiding, and Security.

INTRODUCTION

The desire to send a message as safely and as securely as possible has been the point of discussion since time immemorial. Information is the wealth of any organization. This makes security-issues top priority to an organization dealing with confidential data. Whatever is the method we choose for the security purpose, the burning concern is the degree of security. Steganography is the art of covered or hidden writing. The purpose of steganography is covert communication to hide a message from a third party.

Steganography is often confused with cryptology because the two are similar in the way that they both are used to protect important information. The difference between the two is that Steganography involves hiding information so it appears that no information is hidden at all. If a person or persons views the object that the information is hidden inside of he or she will have no idea that there is any hidden information, therefore the person will not attempt to decrypt the information. There are two main purposes in information hiding: (1) to protect against the detection of secret messages by a passive attacker, and (2) to hide data so that even an active adversary will not be able to isolate the secret message from the cover data. Information hiding system can be divided into four areas which are Covert Channels, Steganography, Anonymity, and Copyright Marking.

A survey of current information hiding has shown that steganography is one of the recent important sub disciplines. This is because most of the proposed information hiding system is designed based on steganography. Today, steganography is most often associated with the high-tech application where data are hidden with other information in an electronic file.

Today's steganographic systems uses multimedia objects like image, audio, video etc., as cover media because people often transmit digital pictures over email and other Internet communication [1-3]. In modern approach, depending on the nature of cover object, steganography can be divided into five types:

- a. Text Steganography
- b. Image Steganography
- c. Audio Steganography
- d. Video Steganography
- e. Protocol Steganography

Three major computational intelligence methods have also been identified in the steganalysis domains which are Bayesian, neural network, and genetic algorithm. Each of these methods has its own pros and cons.

Generally, in steganography, the actual information is not maintained in its original format and thereby it is converted into an alternative equivalent multimedia file like image, video or audio which in turn is being hidden within another object. This apparent message (known as cover text in usual terms) is sent through the network to the recipient, where the actual message is separated from it.

Steganography is the art and science of covered or hidden writing. The purpose of steganography is covert communication to hide the existence of a message from the prying eyes. Digital Steganography algorithms have been developed by using texts, images and audio as the cover media. However, using text as the target medium is relatively difficult as compared to the other target media, because of the lack of available redundant information in a text file. In this paper, we have tried to present a detail survey on Steganography.

REVIEW WORKS

Many of the new attacks in steganography are derived by analysing steganography techniques. This process of analysing steganographic protocols is carried out in order to detect and extract secret messages. The process is called steganalysis which is generally starts with several suspected information streams but uncertain whether any of the information stream contains hidden messages. The goal of steganography is to avoid suspicion on the existence of hidden messages whereas steganalysis aims to discover the hidden message from useless covert messages in a given text or data. Hence, steganalysis is the process of detecting steganography by analysing variances among bit patterns on unusually large file size [4-6].

One of the significant techniques used in steganalysis system is computational intelligence (CI). Thus, this study believed that CI can be implemented to solve steganalysis problems. Hence, this study suggests that to have a good steganalysis tool, the implementation of steganalysis system should involve some degree of CI [7-8].

In recent years, research work has been carried out on DNA-based data hiding schemes [9]. Most of them use the biological properties of DNA sequences. DNA sequence is composed of four nucleotides A, C, G, and T. Hence; we need to transform the representation format of the nucleotides such that the hiding techniques can be used to conceal the secret message in a DNA sequence.

Someone takes the first letter of each word of the previous sentence to see that it is possible and not very difficult. Hiding information in plain text can be done in many different ways [4]. Many techniques involve the modification of the layout of a text, rules like using every n-th character or the altering of the amount of white space after lines or between words [2-3]. The last technique was successfully used in practice and even after a text has been printed and copied on paper for ten times, the secret message could still be retrieved. Another possible way of storing a secret inside a text is using a publicly available cover source, a book or a newspaper, and using a code which consists for example of a combination of a page number, a line number and a character number. This way, no information stored inside the cover source will lead to the hidden message. Discovering it relies solely on gaining knowledge of the secret key.

To hide information, straight message insertion may encode every bit of information in the image or selectively embed the message in —noisyl areas that draw less attention—those areas where there is a great deal of natural colour variation. The message may also be scattered randomly throughout the image. A number of ways exist to hide information in digital media. Common approaches include

- Least significant bit insertion
- Masking and filtering
- Redundant Pattern Encoding
- Encrypt and Scatter
- Algorithms and transformations

Each of these techniques can be applied, with varying degrees of success.

Least significant bit (LSB) insertion is a common and simple approach to embed information in an image file. In this method the LSB of a byte is replaced with an M's bit.

This technique works better for image, audio and video steganography. To the human eye, the resulting image will look identical to the cover object.

Masking and filtering techniques are mostly used on 24 bit and grey scale images. They hide info in a way similar to watermarks on actual paper and are sometimes used as digital watermarks. Masking images entails changing the luminance of the masked area. The smaller the luminance change, the less of a chance that it can be detected. Observe that the luminance in Figure 2 is at 15% in the mask region if it was decreased then it would be nearly invisible [1, 4-5]. Masking is more robust than LSB insertion with respect to compression, cropping, and some image processing. Masking techniques embed information in significant areas so that the hidden message is more integral to the cover image than just hiding it in the --noise level. This makes it more suitable than LSB with, for instance, lossy JPEG images. JPEG images use the discrete cosine transform to achieve compression.

DCT is a lossy compression transform because the cosine values cannot be calculated exactly, and repeated calculations using limited precision numbers introduce rounding errors into the final result. Variances between original data values and restored data values depend on the method used to calculate DCT [6, 7-8].

Embedding secret messages in digital sound is usually a more difficult process than embedding messages in other media, such as digital images. In order to conceal secret messages successfully, a variety of methods for embedding information in digital audio have been introduced. These methods range from rather simple algorithms that insert information in the form of signal noise to more powerful methods that exploit sophisticated signal processing techniques to hide information.

RECENT METHODS

Video files are generally a collection of images and sounds, so most of the presented techniques on images and audio can be applied to video files too [3]. When information is hidden inside video the program or person hiding the information will usually use the DCT (Discrete Cosine Transform) method.

DCT works by slightly changing the each of the images in the video, only so much though so it's isn't noticeable by the human eye. To be more precise about how DCT works, DCT alters values of certain parts of the images, it usually rounds them up. The great advantages of video are the large amount of data that can be hidden inside and the fact that it is a moving stream of images and sounds. Therefore, any small but otherwise noticeable distortions might go by unobserved by humans because of the continuous flow of information [4, 6].

The statistical analysis method can be used against audio files too, since the LSB modification technique can be used on sounds too. Except for this, there are several other things that can be detected. High, inaudible frequencies can be scanned for information and odd distortions or patterns in the sounds might point out the existence of a secret message. Also, differences in pitch echo or background noise may raise suspicion. Like implementing steganography using video files as cover sources, the methods of detecting hidden information are also a combination of techniques used for images and audio files.

However, a different steganographic technique can be used that is especially effective when used in video films [2-7]. The usage of special code signs or gestures is very difficult to detect with a computer system. This method was used in the Vietnam War so prisoners of war could communicate messages secretly through the video films the enemy soldiers made to send to the homefront [4, 6].

Computational intelligence (CI) is the study of the design of intelligent agents which involves iterative development or learning. Computational intelligence includes neural networks, evolutionary computation (genetic algorithms and swarm intelligence) and other optimization algorithms. Techniques for handling uncertainty, such as bayesian, fuzzy logic, certainty theory fit into both categories. All these techniques use a mixture of rules and associated numerical values. Commonly, the implementation of computational intelligence, and their hybrids methods in steganalysis environment are collectively referred to as *intelligent steganalytic systems* (ISS). Nowadays, many researchers have applying CI on steganalysis environment. Most of their results have proven that the application of CI methods has given a great influence on steganalysis performance. They have also identified that the steganalysis environment can be divided into three (3) domains which are image steganalysis, audio steganalysis,

Currently, several methods for detecting image steganography with CI such as LSB embedding [8], spread spectrum steganography, and LSB matching, have been successfully steganalyzed [4].

On analyzing an image, one steganalysis approach [4] had proposed to estimate the hidden message based on a Bayesian framework. Message embedding in bit planes of an image is modelled as a binary symmetric channel. However, this method does not work for LSB embedding due to the lack of statistical structure in the bit plane.

A neural network [5] has been applied to analyse the possible occurrences of certain image pattern through histogram to detect the presence of data. They have used neural network approach to check for those discrepancy patterns and trains itself for better accuracy by automating the whole process from decomposition, signature searching, detection and elimination of the detection framework.

In another study, method based on neural network [6] has proposed to gather statistics features of images to identify the underlying hidden data. This study used neural network to analyze object digital image based on three different types of transformation, which are Domain Frequency Transform (DFT), Domain Coefficient Transform (DCT) and Domain Wavelet Transform (DWT). Meanwhile, the work of detection of wavelet domain information hiding techniques [7] has suggested statistical analysis on the texture of an image. Wavelet coefficients in each sub-band of wavelet transform are modelled as a Generalized Gaussian distribution (GGD) with two parameters. It appears that those parameters are a good measure of image features and can be used to discriminate stego-images from innocent images. Neural network is adopted to train these parameters to get the inherent characteristic of innocent and stegoimages. Other study also claimed [8] that an artificial neural network capable of supervised learning results in the creation of a surprisingly reliable predictor of steganographic content, even with relatively small amounts of embedded data.

The interesting result is that clean colour images

can be reliably distinguished from steganographically altered images based on texture alone, regardless of the embedding algorithm. Another study [7] that utilized an artificial neural network as the classifier in a blind steganalysis system. They found that an artificial neural network performs better in steganalysis than Bayes classifier due to its powerful learning capability. Thus, IEEE Computer Society [2] has suggested artificial neural network technology system (ANNTS). This technology is designed to recognize the digital files containing messages hidden by scanning an image or other file. ANNTS can accurately identify steganographic images between 85% and 100% of the time.

CONCLUSIONS

Many different techniques exist and continue to be developed, while the ways of detecting hidden messages also advance quickly. Since detection can never give a guarantee of finding all hidden information, it can be used together with methods of defeating steganography, to minimize the chances of hidden communication taking place. Even then, perfect steganography, where the secret key will merely point out parts of a cover source which form the message, will pass undetected, because the cover source contains no information about the secret message at all. DNA as a storage medium is extremely effective. It is compact, biodegradable, and consumes very little energy. Today it is used to propagate species, encode synthesis, and solve protein complex computational problems. Who knows what it will do in the future? Recognizing this, techniques for

hiding data to catalog, annotate, watermark, and/or encrypt information in this medium can have tremendous purpose. This paper proposes the original idea of hiding data in DNA.

REFERENCES

- Johnson, N. F. and Jajodia, S. (1998). Exploring steganography: Seeing the unseen. Computer, 31(2): 26–34.
- 2. Saraju P. Mohant. Digital Watermarking: A Tutorial Review
- 3. Niels Provos, Peter Honeyman, Hide and Seek: Introduction to Steganography (2003).
- F.A.P.Petitcolas, et al., Information Hiding A Survey, Proceedings of the IEEE, Vol.87, No.7, July 1999, pp.1062-1078.
- B.Pfitzmann, IInformation Hiding Terminology, Proc. of First Int. Workshop on Information Hiding, Cambridge, UK, May30-June1, 1996, Lecture notes in Computer Science, Vol.1174, Ross Anderson(Ed.), pp.347-350
- David Kahn, IThe History of Steganography, Proc. of First Int. Workshop on Information Hiding, Cambridge,UK, May30-June1 1996, Lecture notes in Computer Science, Vol.1174, Ross Anderson (Ed.), pp.1-7.
- Roshidi Din, and Hanizan Shaker Hussain, and Sallehuddin Shuib, —Hiding secret messages in images: suitability of different image file types, WSEAS TRANSACTIONS on COMPUTERS, vol. 6(1), January 2006, pp. 127 -132.
- G. Luo, X. Sun, L. Xiang, and J. Huang, —An evaluation scheme for steganalysis-proof ability of steganalysis algorithmsl, International Conference on Intelligent Information Hiding and Multimedia Si Processing (IIHMSP), vol. 2, 26-28 Nov 2007, pp. 126 - 129.