
Software Clone Management-An Insight

Sandeep Bal#1, Sumesh Sood*2

#Research Scholar, PTU, Kapurthala, Punjab ,India
1sandeep.bal84@gmail.com

*Department of Computer Science,

Swami Satyanand College of Management & Technology, Amritsar, Punjab, India
2Sumesh64@gmail.com

Abstract- In the current programming scenario, most

Software systems contain sections of copied code

which ultimately results in software code cloning.

Such cloning trends can be seen in different versions

of the same software or different software which

provide similar kind of services to its users. This

situation arose due to the copy-and-paste

programming practice. Software maintenance is an

ongoing process which works side by side as the

system is improved/ updated on timely basis. The

concept of software clone management is also a part

of such maintenance work. In this paper, an insight to

the clone management has been shown where various

aspects of clone management are discussed in the

form of approaches, metrics, tools and techniques.

Keywords- Clone management, Prioritization, Clone

change notification system, Maintenance, Software

quality.

I. Introduction

The clones in a system can be managed by assisting

the programmer for assigning priorities to sets of

clones listed in the code clone reports. The

Software Clone Quality – quality of cloned code

fragments with regard to its adherence to software

coding standards can also be determined. The

priority of the clones can be decided by the impact

of the clones in terms of factors like maintenance,

quality aspects, and refactoring. The clones can be

fixed on the basis of the metrics and values

associated with these factors. A prioritization

system [1] along with its prioritization factors and

the metrics for prioritization has been mentioned.

The clone management (refactoring, simultaneous

editing) has also been supported by a clone change

notification system [2] called as Clone Notifier. It

helps the developers in notifying newly-appeared

and changed clones on a regular basis. The aim of

the analysis is data collection for the development

of technique to recommend refactoring candidate

from all newly-appeared and changed clones. The

whole concept starts up with the categorization of

code clones and clone sets based on the evolution

patterns between two versions of source code. Prior

to that, a clone detection tool helps in detecting the

clones among the versions of software.

Another maintenance support environment, Gemini

[3] has been developed which provides the user

with the useful functions to analyze the code clones

and modify them [4]. The tool CCFinder [5] is one

of the components of Gemini and used to detect

code clones. Gemini primarily provides two

diagrams: scatter plot and metrics graph. The

scatter plot graphically shows the locations of code

clones among source codes. The metrics graph

shows metric value of each clone and has a feature

to identify the distinctive code clones. Gemini

received several practical problems after being

evaluated by different software companies through

case studies. The identified problems consisted of

applying Gemini to refactoring activities [6] and

identification of the modified code portions as

clone. Refactoring was not easy to be done due to

the inappropriateness of the clones to be merged in

a single module (procedure, function, macro etc).

The reason behind is the detection of the maximal

code clones that often include excessive tokens that

should be omitted in merging the clones into one

routine. The issue of un-identification of modified

code portions is found to be the minute changes

done in the copy-and-paste programming. Usually,

some statements are inserted to the code portion or

deleted from it. Gemini cannot find such modified

code clones (called gapped clone). The issue got

resolved by extending the functionality of Gemini

by adding the new function to extract the part of

code clone which is easy to merge one module. For

the latter issue, a method is proposed to show all

the candidates of gapped code clones. The

implementation of Gemini to several software

helped in evaluating the applicability of the

proposed method.

Taking ahead the issue of clone management

further lead to study the relation between code

clones and reliability and maintainability of a

software (software quality) [7]. The modules

having code clones (clone-included modules) are

more reliable than modules having no code clone

(non-clone modules) on average. Nevertheless, the

modules having very large code clones (more than

Journal of Computing Technologies (2278 – 3814) / # 43 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 43

200 SLOC) are less reliable than non-clone

modules. Clone-included modules are less

maintainable (having greater revision number on

average) than non-clone modules; and, modules

having larger code clone are less maintainable than

modules having smaller code clone. The removal of

a clone is suggested if it leads to bad effect on

maintenance of the software system.

II. Clone Prioritization System-

Factors and Metrics

The clone detection tools are run on a code base

which is obtained from the version control system.

The results produced are the large reports

consisting information about the clones in the

selected version of the code base. The

prioritization system works on such a selected code

base by using results provided by the various

analysis tools like – Static analysis tools,

Refactoring workbench, Program comprehension

tools, Metric tools – results of which are mapped to

a selected quality model. The EMISQ quality

model [8] (which is based on ISO 9126 standard

[9]) has been used for implementing this system. In

a way, it helps determine the Software Clone

Quality – the extent to which maintainability is

affected and the impact on the measured code

quality in terms of the number of violations and its

severity. It also takes into consideration the effects

of refactoring the clone. Figure 1 provides a

pictorial overview of the discussed method.

 Figure 1: Overview of System for Clone Prioritization

The priority of the clones and clone set is decided

by considering different criteria. On the basis of

several measures, different factors help in

determining the order of the clone results. They

help in determining the weight or the priority value

for the clone class and for each individual clone in

the clone class in a cumulative manner.

A. Factor 1: Lack of Software Quality of the Clone

(LSQ)

The quality of the clone code can be determined on

the basis of the number of static analysis violations

of different severity categories that can be found in

the clone class and a particular clone. It is

indicative of bug-proneness of the clone. The

possible measures and metrics are:

1) Severity of a Rule (Sevi): This represents

severity (also called Message Level by

some tools [10]) of the violated static

analysis rules, identified within the clone

fragments.

2) Weight Attached to the Rule (Wi): This

refers to the weight associated with the

violated static analysis rules computed

based on the project specific

considerations.

3) Criticality of the Rule (Criti): This is a

function of its Severity and its Weight. It

combines both the factors to decide on the

importance of the rule.

4) Count of Violations of a Rule within a

Clone Fragment (CoV i (n,j)): This keeps

track of the number of occurrences of the

violation of a rule within a clone.

Selection of these violations is subject to

two metrics as listed below.

a) Violations with relevance to Quality

Attributes.

b) Likeliness of a violation to be false

positive (FP).

The LSQ for a single clone fragment C(n,j) as well as

for a clone class CCn can be defined as:

B. Factor 2: Refactoring Magnitude (RFT)

It represents the impact of the proposed refactoring

on the clone along with the magnitude of the side-

effects of the clone. It answers questions on the

need for the proposed refactoring. The measures

and metrics that contribute towards this factor can

be varied and mostly specific to each project. The

refactoring requirement should be assigned priority

accordingly (some may prefer ease of refactoring

over risk of change).

The Extract Method Refactoring (EMR), Pull-Up

Method Refactoring (PMR), Parameterization

Refactoring (PR), and Template Methods

Refactoring (TMR) are the most commonly

advocated refactoring techniques to remove cloned

code [11, 12]. Object-Oriented Refactoring or

Aspect Oriented Refactoring approaches can also

be applied [13]. This refactoring activity is further

categorized based on its location, since the

applicability of any of these does not readily reflect

the effort required or the magnitude of impact:

1) Shared library creation (SLC): For clones

across classes in different modules.

Journal of Computing Technologies (2278 – 3814) / # 44 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 44

2) Interface or base class creation (BCC): For

clones across classes within the same

module.

3) Virtual method creation (VMC): For

clones in functions of classes within the

same module.

4) Helper method creation (HMC): For

clones in functions within same

namespace.

5) Common method within a class (CMC):

For clones within the same function/class.

Refactoring Magnitude for a clone class can be

defined as:

C. Factor 3: Maintenance Overhead for Cloned

Code (MO)

The maintenance overhead factor attempts to

quantify the overhead in terms of cost and effort

that may be required if the clone is not fixed, and

the likeliness of the clone becoming inconsistent.

These metrics are related to various maintenance

activities centered on the artifacts that need to be

maintained. Each of the metric MM a can be

described as follows:

1) Size of Clone (MM CLNS): This indicates

number of cloned lines in a clone

fragment. Larger size indicates higher

maintenance.

2) Likeliness of Clone Use (MM LCU): This is

a multiplication of the following two

metrics. The intuition behind this is, more

the clone fragment is used, more

maintenance it may require.

a) Number of times a function

containing the clone code is being

called based on static call graph of

the program: Due to difficulty and

cost involved in enumerating all the

call strings, this measure can be

restricted to a sub set of call strings

that are covered in the system test

cases.

b) Frequency of the clone code being

used in the function based on the

control flow graph of the function:

This measure can be obtained by

enumerating the static control flow

graph of the function.

3) File Change Frequency (MMFCF): The

number of times a file containing the

clone has been modified in the past.

4) Days since Last File Change (MMDLFC):

This is calculated by subtracting the

Number of Days since Last File

Modification from the Maximum Number

of Days since any Modification to the

File. The heuristic followed is that - more

recently a file has been changed, more

likely it is to be changed again; also a file

that has been modified more number of

times is likely to undergo more frequent

changes. Clones contained in files that

change more frequently are more likely to

become inconsistent.

5) Age of the Clone in Days (MMCA): It

measures how long the clone has lived. It

has been suggested that the more long

lived the clone is, the more stable it is and

hence has lower maintenance overhead.

6) Maintainability Index of the Function

Evaluated using Quality Model

(MMMQM): This takes into consideration

multiple metrics and measures that may

affect the maintainability of a function,

e.g. eLoC for function, Cyclomatic

Complexity, Efferent and Afferent

Coupling.

The Maintenance Overhead (MO) of the clone

class can be calculated according to the following:

The above discussed factors are defined in a

manner suitable for customization based on the

project requirements.

III. Clone Change Notification System

Clone Notification System has been applied into

the process of the web application software

development at NEC Corporation, a Japanese

multinational IT company. This Clone Notifier

used the clone detection tool CCFinder [5].

CCFinder is a token-based code clone detection

tool. It takes source files as an input and outputs

location information of code clones in source code.

It detects identical code fragments except for

variations in whitespaces and comments. It also

detects structurally/syntactically identical

fragments except for variations in identifies,

literals, types, layout and comments [14].

Clone Notifier is developed to perform check up of

changed code clones in source code because the

developers are more interested in code clones that

are changed. In order to assist them in the difficult

task of checking changed code clones from all of

detected code clones, Clone Notifier has been

designed.

A. Overview

Figure 2 shows the process of Clone Notifier which

takes two versions of source code as an input. It

assumes that the developers use version control

Journal of Computing Technologies (2278 – 3814) / # 45 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 45

system such as Subversion in software

development.

The process of this system is comprises of

following four steps:

Step 1: Get the current version of source code from

version control system as the latest version Vt.

Step 2: Categorize code clones and clone sets

between Vt and Vt−1 on a pre defined concept of

clone categorization.

Step 3: Generate html files for web-based user

interface (UI) and a text file for e-mail notification.

Step 4: Send an e-mail with generated text file to

developers on changed clones.

As described above, Clone Notifier provides

information of changed code clones and clone sets

between the two versions by an e-mail. Also, Clone

Notifier provides web-based code clone viewer for

developers who see an e-mail.

Figure. 2. Process of Clone Notifier

B. E-mail Notification

This e-mail notification is aimed to send an initial

report of new code clones and changed code

clones. The following information is provided by

the e-mail notification:

1. Project information.

 File information: the number of all files,

added files, deleted files, and files that

contain code clones.

 Categorization of clone sets: the number

of stable, changed, new and deleted clone

sets in Vt and Vt−1.

 Categorization of code clones: the number

of stable, modified and added clones in Vt

and deleted clones in Vt−1.

2. Clone set list: the list of changed clone sets

which categorized into changed, new and deleted

clone sets. The following information on each

clone set is provided.

 Clone set id: the index assigned for each

clone set in Vt and Vt−1.

 Code clone list: the list of code clones

involved in each clone set between two

versions.

 Code fragment: each code clone with the

line number on the source file in Vt .

C. C. Web-Based UI

This viewer supports developers who see a

notification email and would like to understand the

detail of new and changed clone sets. Once a

developer select one of clone sets, this Web-based

UI shows source code and also highlights code

clones in the source code. This user interface

consists of the following pages:

 Clone set list page: It displays the list of

clone sets. Users can move to the

corresponding source file page by clicking

the links of each code clone.

 Source file page: It displays code clones

that are involved in the selected clone set

in clone set list page. Each code clone is

highlighted on this page.

IV. Gemini: A tool for Maintenance

support

This maintenance support environment based on

code clone analysis, also called as Gemini has

been developed in [15]. The system architecture

can be seen in Figure 3(a). The gray parts (a gray

quadrilateral and ellipse) have been proposed in

[22] and the black parts (enlarged in Figure 3(b))

have been proposed in [4]. Basically, Gemini

delivers the source files to the code clone detector,

CCFinder[5], and then shows the information of the

detected code clones to the user through various

GUIs.

An interactive code clone analysis can be seen with

the help of following view windows which are

possible due to Gemini since it is a GUI-based code

clone analysis environment:

 Scatter plot view,

 Metric graph view, and

 Source code view.

Journal of Computing Technologies (2278 – 3814) / # 46 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 46

Figure 3(a) Architecture

Figure 3(b) Code Clone Shaper

The existence of existing clone pairs in source files

can be seen visually by using Scatter plot. It

provides the state of distribution of code clone at a

glance in early phase of code clone analysis

therefore it is very effective mechanism where the

user can select clone pairs by mouse dragging.

The selection of clones by their quantitative

characteristics can be performed by the Metric

graph view. User can select clone pairs or classes in

metric graph view, by the values of metric for each

clone class to easily select the distinctive ones.

The source code view works co operating the

scatter plot view on the metric graph view. The

user can obtain the actual source code

corresponding to clones selected in the other views.

Problems found in case studies

There occurred many problems during the case

studies of Gemini (and CCFinder) implementation

on several commercial software products.

Following are the two serious and repeated

problems:

The developers usually do not reuse the code

portion as it was- but they partially modifies the

code and then reuse it in the case of ‘copy-and-

paste’ reuse. For example, additional statements

would be inserted into it. Thus, some differences

exist between the original code portion and the

copied-and-pasted one. Here, we call the each

difference “gap” and such code clone as “gapped

clone”. As the minimum length of a code clone

must be set in CCFinder beforehand, so when the

code portion is found too short, CCFinder does not

identify it as a code clone. Conversely, if we set a

small value to the minimum length, then a lot of

code clones are detected and the information is

practically useless.

In [4], a solution was proposed to this problem. In

the paper, we could refer to a certain set of gapped

clones by representing visually exact/renamed

clones and gaps themselves on scatter plot. In fact,

the complexity of detecting all gapped clones one

by one is massive (square of number of

exact/renamed clones). So, we took the alternative

solution.

Next, as for the second problem, the clone

detection process of CCFinder is very fast but only

lexical analysis is performed where the detected

clones are just maximal and not always

semantically cohesive. Hence it is necessary for the

user of CCFinder to extract semantically cohesive

portions manually from the maximal. Sometimes

the semantically cohesive clones has more

important meaning than maximal (just longest in

local) ones during the refactoring process.

Coincidental Cloning might be another issue

around the scenario. There might be a common

logic between similar processes which has lead to

code cloning.

In [16] and [17], the semantically cohesive code

clones are detected using program dependence

graph (PDG) for the purpose of procedure

extraction and so on. However, currently, there are

no examples of the application of their approaches

to large scale software since the cost to create PDG

is very high.

To solve this problem, a two-step approach is taken

in which maximal clones are detected first and then

semantically cohesive clones are extracted from the

results.

The easy to be reused code clones can be detected

in less time by using this approach. The details are

explained in next section.

Approach

The Shaped Clone are defined as the merge-

oriented code clone extracted from the clones

detected by CCFinder. The extracting process

consists of the following three steps:

STEP 1: CCFinder is performed and clone pairs are

detected.

STEP 2: By parsing the inputted source files and

investigating the positions of blocks, semantic

Journal of Computing Technologies (2278 – 3814) / # 47 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 47

information (body of method, loop and so on) is

given to each block.

STEP 3: Using the information of location of clone

pairs and semantics of blocks, meaningful blocks in

the code clone are extracted. Here, intuitively,

meaningful block indicates the part of code clone

that is easy to merge.

Implementation

The implementation of the shaped clone detection

function (Code Clone Shaper in Figure 3(b)) has

been done in Gemini. The implementation of the

proposed shaped clone detection method is

explained below which includes the following

units:

– Control unit

– Parsing unit

– Block extraction unit

– Block management unit

Control unit invokes the Parsing unit, Block

extraction unit, and Block management unit

through reading the code clone information (output

from CCFinder).

Parsing unit conducts lexical and syntax analysis

for the inputted source files. Here, Block is defined

as code portion enclosed by a pair of brackets.

Block extraction unit extracts the block from the

code clones detected by CCFinder using the stored

data and analysis results from CCFinder.

Block management unit puts the blocks extracted

by Block extraction unit in an appropriate order. It

is necessary to obtain the consistency of the data

used in Gemini.

V. Software Quality Analysis

It was noticed while reviewing previous work that

considerable parts (5-50%) of large software are

code clones[18][19][20]. The reasons found were

reusing code by copying a pre-existing program

fragment [21][19][22]; and addition of new

functionalities to an existing system while

performing maintenance/ up gradation. It ultimately

leads to poor software quality such as low

readability and changeability [19]. If one revises a

copy of duplicated code sections, he/she must

update all the other copies, and this may raise the

maintenance cost. Moreover, if he/she overlooks

one of the copies, a fault will remain in the copy,

and this may lower the reliability of the system.

However, the influence of code clones on software

quality has not been quantitatively clarified yet.

The main goals of this study are:

1. Clarify the relation between code clones

and the reliability.

2. Clarify the relation between code clones

and the maintainability.

It is possible to estimate the reliability of a system

which can be calculated by measuring the number

of faults found over a specific time period. A

system with fewer faults is considered more

reliable than a system with a greater number of

faults. So, measuring the number of faults of an

existing system will help in analyzing the relation

between code clones and the reliability of that

system.

On the other hand, it is not easy to measure the

maintainability of a system. Since, maintainability

is related to the maintenance cost (person-hours)

which means that a system of poor maintainability

requires more cost in doing maintenance works

than that of higher maintainability. Another way to

estimate the maintainability is using software

(product) metrics. Many software metrics have

been proposed to measure the complexity of

software such as McCabe’s Cyclomatic number,

Halsted’s metrics, and Chidamber & Kemerers’

metrics, etc [23][24][25][26] but these are not

useful in calculating reliability and maintainability

because code clones are essentially independent

from these metrics. Moreover, a module with low

maintainability and a large cyclomatic number (per

SLOC) does not specify if the software quality is

affected by cloning.

Another solution for measuring maintainability is

to use the revision number of software modules.

The repeated revision (adding and changing

functionalities), makes it more complicated and

more difficult to be maintained.

 Module based analysis

In order to clarify the relation between software

quality and code clones, a module-based analysis is

conducted. The clone pairs are classified into

following two types (Figure 4.)

(1) In-module clone pair: A code fragment

pair is known as “in-module clone pair” if

both fragments in the pair exist in the

same module.

(2) Inter-module clone pair: A code fragment

pair is known as “inter-module clone pair”

if each fragment in the pair exists in the

different module.

Figure 4. Types of Code Clone Pairs

Journal of Computing Technologies (2278 – 3814) / # 48 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 48

These two types of clone pairs may have different

influence on software quality. Inter-module clones

may implicitly increase the functional coupling

between modules, while in-module clones do not

affect the strength of coupling between modules.

Based on above classification, the modules are

classified into following four types (Figure 5.)

1. Non-clone module: A module containing

no clones.

2. Clone-included module: A module

containing at least one code clone pair.

This type of module is classified into

following three modules.

2.1 Closed module: A module

containing in-module clone pairs

only.

2.2 Related module: A module

containing inter-module clone

pairs only.

2.3 Composite module: A module

containing both in-module and

inter module clone pairs.

Figure 5. Module Classification

The analysis is performed on a legacy software

developed about 20 years ago. It has been

continuously maintained till today.

The analysis consisted of code fragments having at

least 30 same lines. The measurements of the

experiment are as follows:

1. LOC (Lines of code): Lines of code of each

module.

2. AGE (Module age): The number of days from

the date each module is initially developed to

the present.

3. REV (Revision number): The number of

revisions made upon each module till present.

The revision includes any kind of

modifications done to each module such as

fixing faults and adding and changing

functionalities.

4. Faults (The number of faults): The number

faults found from each module in recent years

(past six years in this experiment).

5. MAXLEN (Length of maximum clone): The

length (LOC) of the largest code clone

included in each module.

6. COVERAGE (Coverage of clone): The

percentage of lines that include any portion of

clone in each module.

Figure 6 shows an example of code clone metrics.

MAXLEN of module B is 20 because module B

contains two clones and both of them are of 20

LOC. Similarly, MAXLEN of module D is 40

because the largest clone included in module D is

of 40 LOC.

COVERAGE of module B is 80% (= 40 / 80 * 100)

because total clone size is 40 LOC (= 20 + 20) and

the module size is 80LOC. Similarly, COVERAGE

of module D is 80% (= 80 / 100 * 100) because

total clone size is 80 LOC (= 40 + 20 + 20) and the

module size is 100 LOC.

Figure 6. Code Clone Metrics

In order to evaluate the reliability of modules,

number of faults per line is taken as a reliability

measure. A comparison of reliability between non-

clone modules and clone-included modules is

shown in figure 7, which shows that clone-included

modules are more reliable than non-clone modules.

Clone-included modules are 1.7 times as reliable as

non-clone modules on average. One possible

interpretation for this result is that copying code

from trusted part can lessen the fault injection

compared with writing the code from scratch.

Another possible interpretation is that code

fragments created by copy-and past programming

do not have new types of functionality, so that there

may be little chance of introducing unknown types

of faults in the fragments.

The reliability of each type of modules is shown in

figure 8. Closed modules, related modules, and

composite modules are all more reliable than non-

clone modules on average.

Journal of Computing Technologies (2278 – 3814) / # 49 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 49

Figure 7. Relation between reliability and clones

Figure 8. Reliability of modules

Revision number is chosen as a maintainability

measure for evaluating the maintainability of

modules. A comparison of the maintainability

between non-clone modules and clone-included

modules is shown in figure 9 which shows that

clone included modules are less maintainable than

non-clone modules. Figure 10 shows the

maintainability of each type of modules. Closed

modules, related modules, and composite modules

are all less maintainable than non-clone modules on

average.

Figure 9. Relation between maintainibility and clone

Figure 10. Maintainibility of different modules

VI. Summary

In this paper, various clone management issues

were defined. Priorities were assigned to the

various detected clones in software in order to

perform effective clone management. The factors

take into consideration the Software Clone Quality,

the cost incurred due to the clone maintenance and

the effects of refactoring the clones.

A clone change notification system, Clone Notifier

was elaborated that notifies newly-appeared and

changed clones regularly to developers.

The functionality of a maintenance support

environment Gemini was extended to easily merge

code clones into one code portion. It supported the

maintenance activity more efficiently.

At last, the relation between code clones and the

software reliability and maintainability of a

software was explained which led to the following

conclusions:

- Clone-included modules are 1.7 times as reliable

as non-clone modules on average.

- Closed modules, related modules, and composite

modules are all more reliable than non-clone

modules on average.

- The modules having very large code clones (more

than 200 lines) are less reliable than non-clone

modules.

- Clone-included modules are less maintainable

(having greater revision number) than non-clone

modules on average.

- Closed modules, related modules, and composite

modules are all less maintainable than non-clone

modules on average.

- The modules having larger code clone are less

maintainable than modules having smaller code

clone.

References

[1] Venkatasubramanyam, R. D., Gupta, S., & Singh, H.

K. (2013, May). Prioritizing code clone detection

results for clone management. In Proceedings of the

7th International Workshop on Software Clones (pp.
30-36). IEEE Press.

[2] Yamanaka, Y., Choi, E., Yoshida, N., Inoue, K., &

Sano, T. (2013, May). Applying clone change
notification system into an industrial development

Journal of Computing Technologies (2278 – 3814) / # 50 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 50

process. In Program Comprehension (ICPC), 2013
IEEE 21st International Conference on (pp. 199-

206). IEEE.

[3] Higo, Y., Ueda, Y., Kamiya, T., Kusumoto, S., &
Inoue, K. (2002). On software maintenance process

improvement based on code clone analysis. In

Product Focused Software Process Improvement
(pp. 185-197). Springer Berlin Heidelberg.

[4] Ueda, Y., Kamiya, T., Kusumoto, S., & Inoue, K.

(2002). On detection of gapped code clones using
gap locations. In Software Engineering Conference,

2002. Ninth Asia-Pacific (pp. 327-336). IEEE.

[5] Kamiya, T., Kusumoto, S., & Inoue, K. (2002).
CCFinder: a multilinguistic token-based code clone

detection system for large scale source code.
Software Engineering, IEEE Transactions on, 28(7),

654-670.

[6] Fowler, M. (2009). Refactoring: improving the
design of existing code. Pearson Education India.

[7] Monden, A., Nakae, D., Kamiya, T., Sato, S. I., &

Matsumoto, K. I. (2002). Software quality analysis
by code clones in industrial legacy software. In

Software Metrics, 2002. Proceedings. Eighth IEEE

Symposium on (pp. 87-94). IEEE.
[8] Plosch, R., Gruber, H., Hentschel, A., Korner, C.,

Pomberger, G., Schiffer, S., ... & Storck, S. (2007,

March). The EMISQ method-Expert based
evaluation of internal software quality. In Software

Engineering Workshop, 2007. SEW 2007. 31st IEEE

(pp. 99-108). IEEE.
[9] ISO/IEC 9126-1:2001, Software Engineering –

Product Quality– Part 1: Quality Model. 2001.

[10] http://msdn.microsoft.com/enS/library/bb429379(v=
vs.80).aspx

[11] Roy, C. K., & Cordy, J. R. (2007). A survey on

software clone detection research. Technical Report
541, Queen’s University at Kingston.

[12] Koni-N’Sapu, G. G. (2001). A scenario based

approach for refactoring duplicated code in object
oriented systems. Master's thesis, University of Bern.

[13] Schulze, S., Kuhlemann, M., & Rosenmüller, M.

(2008, October). Towards a refactoring guideline
using code clone classification. In Proceedings of

the 2nd Workshop on Refactoring Tools (p. 6).

ACM.
[14] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., &

Merlo, E. (2007). Comparison and evaluation of

clone detection tools. Software Engineering, IEEE
Transactions on, 33(9), 577-591.

[15] Ueda, Y., Kamiya, T., Kusumoto, S., & Inoue, K.

(2002). Gemini: Maintenance support environment
based on code clone analysis. In Software Metrics,

2002. Proceedings. Eighth IEEE Symposium on (pp.

67-76). IEEE.

[16] Komondoor, R., & Horwitz, S. (2001). Using slicing

to identify duplication in source code. In Static

Analysis (pp. 40 56). Springer Berlin Heidelberg.
[17] Krinke, J. (2001). Identifying similar code with

program dependence graphs. In Reverse

Engineering, 2001. Proceedings. Eighth Working
Conference on (pp. 301-309). IEEE.

[18] Baker, B. S. (1995, July). On finding duplication and

near-duplication in large software systems. In
Reverse Engineering, 1995., Proceedings of 2nd

Working Conference on (pp. 86-95). IEEE.
[19] Ducasse, S., Rieger, M., & Demeyer, S. (1999). A

language independent approach for detecting

duplicated code. In Software Maintenance,
1999.(ICSM'99) Proceedings. IEEE International

Conference on (pp. 109-118). IEEE.

[20] Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., &

Hudepohl, J. (1997, October). Assessing the benefits

of incorporating function clone detection in a

development process. In Software Maintenance,
1997. Proceedings., International Conference on

(pp. 314-321). IEEE.

[21] Baxter, I. D., Yahin, A., Moura, L., Anna, M. S., &
Bier, L. (1998, November). Clone detection using

abstract syntax trees. In Software Maintenance,

1998. Proceedings., International Conference on
(pp. 368-377). IEEE.

[22] Monden, A., Nakae, D., Kamiya, T., Sato, S. I., &

Matsumoto, K. I. (2002). Software quality analysis
by code clones in industrial legacy software. In

Software Metrics, 2002. Proceedings. Eighth IEEE

Symposium on (pp. 87-94). IEEE.
[23] Chidamber, S. R., & Kemerer, C. F. (1994). A

metrics suite for object oriented design. Software

Engineering, IEEE Transactions on, 20(6), 476-493.
[24] Fenton, N. (1991). Softwre Metrics: A Rigorous

Approach.

[25] Halstead, M. H. (1977). Elements of software
science (Vol. 7, p. 127). New York: Elsevier.

[26] McCabe, T. J. (1976). A complexity measure.
Software Engineering, IEEE Transactions on, (4),

308-320.

Journal of Computing Technologies (2278 – 3814) / # 51 / Volume 5 Issue 2

 © 2015 JCT. All Rights Reserved 51

