
http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 1 | Copyright © 2023. JCT Publications. All Rights Reserved

Volume-12, Issue-07, July 2023

JOURNAL OF COMPUTING TECHNOLOGIES (JCT)

International Journal

Page Number: 01-07

Floating-Point Butterfly Architecture Based On

Binary Signed-Digit Representation

1
Rahul Nath Tiwari,

2
Prof. Nishi Pandey,

3
Prof. Abhishek Agwekar

 1
M. Tech Scholar,

2
Asst.professor,

3
Head of department,

1,2,3
 TIEIT, Bhopal, (M.P.), INDIA

rahulnathtiwari007@gmail.com, nishi.pandey@trubainstitute.ac.in, abhiagwekar@gmail.com

Abstract— This reveals the motivation to develop a high-speed FP butterfly design to mitigate FP slowness.

This brief proposes a fast FP butterfly unit employing a devised FP fused dot product-add (FDPA) unit.

During this planned 32 point FFT design. Floating-point arithmetic is enticing for the implementation for a

spread of Digital Signal processing (DSP) applications as a result of it permits the designer and user to

consider the algorithms and design without concern about numerical problems. In the past, many DSP

applications used fixed point arithmetic due to the high cost (in delay, silicon area, and power consumption) of

floating-point arithmetic units. The analysis results justify that the planned FP butterfly design is much faster

than previous counterparts but at the value of additional area. Within the planned work design area is reduce

than previous FFT design. The planned design of this analysis the logic size, area and power consumption

using Xilinx 14.2.Fast Fourier transform (FFT) coprocessor, having a significant impact on the performance

of communication systems, has been a hot topic of research for many years. The FFT function consists of

consecutive multiply add operations over complex numbers, dubbed as butterfly units. Fast Fourier transform

(FFT) is one amongst the most necessary tools in digital signal processing in addition as communication

system as a result of transforming time domain to S-plane is very convenient using FFT. Applying floating-

point(FP) arithmetic to FFT architectures, specifically butterfly units, has become additional common

recently. However, the main drawback of FP butterfly is its slowness as compared with its fixed point

counterpart.

Keywords— butterfly filter , floating-point(FP) arithmetic, API, Xilinx 14.2and FFT function .

I. INTRODUCTION
 A floating-point number system is enticing for a

variety of signal processing applications due to the wide

dynamic range that provides freedom from scaling and

overflows considerations that arise with fixed-point

implementations. Among the varied floating-point number

formats, IEEE- 754 single precision normal is used during

this paper [1]. The only precision format is 32-bits

consisting of a 1-bit sign, an 8-bit exponent, and a 23-bit

mantissa. Additionally, there is one arithmetic operations.

 Therefore, this paper examines a complex

butterfly arithmetic operation within which every element

(i.e., real and imaginary) of the data is represented by 32-

bit single precision floating point numbers. However,

floating-point arithmetic units have additional space, delay

and power consumption than fixed point arithmetic units.

A floating point number representation can simultaneously

provide a large range of numbers and a high degree of

precision. As a result, a portion of most microprocessors is

often dedicated to hardware for floating point computation.

Unlike fixed-point arithmetic, each computer company

developed their own standards for the floating-point

representation in electronic machines until the IEEE- 754

standard was introduced in 1985. Floating-point operations

are widely used for advanced applications such as 3D

graphics, signal processing, and scientific computations.

 These require a wide dynamic range. Fixed-point

arithmetic is not sufficient for this, but floating point

arithmetic, such as that which is specified in IEEE-754

Standard for floating-point arithmetic, can represent a wide

range of numbers from tiny fractional numbers to nearly

infinitely huge numbers so that the overflow and underflow

are avoided. This paper presents improved architecture

designs and implementation details for a floating-point

fused two-term dot product unit. The floating-point fused

mailto:nishi.pandey@trubainstitute.ac.in
mailto:abhiagwekar@gmail.com

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 2 | Copyright © 2023. JCT Publications. All Rights Reserved

dot product unit is useful for many digital signal processing

(DSP) applications.

Floating-Point Arithmetic

 Floating-point arithmetic is being used, and

preferred over fixed-point, in many applications due to the

fact that it provides a large range of numbers and a high

degree of precision. It is also common to be used in a

variety of Digital Signal Processing (DSP) applications

because it relieves the designer of numerical issues e.g.,

scaling, overflow, and underflow. A floating-point number,

as represented in Eqn. 1.1, consists of four components;

namely, sign, significant, base and exponent.

 Fig.1 Butterfly Architecture (DIT)

 There are two methods to implement a butterfly

unit: 1) conventional 2) Golub's approach. Fig. .2 shows

the implementation of a DIT butterfly with expanded

complex numbers using the conventional approach.

Accordingly, it consists of four multipliers and six

adders/subtracters. Its hould be noted that, given the

constant values of twiddle factors (W), the multipliers are

constant and can be implemented via a series of shifters

and adders in lieu of the multiplier tree.

Fig.2 DIT Butterfly architecture using conventional

approach

Fig. 3 shows the implementation of a DIT butterfly unit

based on the Golub's approach. Accordingly, it consists of

three multipliers and nine adders/subtracters.

Fig.3 DIT Butterfly architecture using Golub's approach

II. LITERATURE REVIEW

 Amir Kaivani et.al -Point Butterfly Architecture

Based on Binary Signed-Digitin this paper planned a high-

speed FP butterfly design that is faster than previous works

however at the value of higher space. The reason for this

speed improvement is twofold: 1) BSD illustration of the

significant that eliminates carry-propagation and 2) the

new FDPA unit planned during this brief. This unit

combines multiplications and additions needed inFP

butterfly; therefore higher speed is achieved by eliminating

additional LZD, normalization, and rounding units. More

analysis is also envisaged on applying dual-path FP design

to the threeoperandFP adder and using different redundant

FP representations. Moreover, use of improved techniques

within the termination phase of the planning (i.e.,

redundant LZD, standardization, and rounding) would lead

to faster architectures, although higher area prices are

expected.

 Earl E. Swartzlander Jr –Point this paper

describes the planning of 2 new fused floating-point

arithmetic units andtheir application to the implementation

of FFT butterfly operations. Though the fused add subtract

unit is particular to FFT applications, the fused dot product

is applicable to a wide style of signal process applications.

Each the fused real unit and also the fused add-subtract unit

are smaller than parallel implementations created with

discrete floating-point adders and multipliers. The fused

dot product is faster than the standard implementation,

since rounding and normalization isn't needed as a part of

every multiplication. Due to longer interconnections, the

fused add-subtract unit is slightly slower than the discrete

implementation. The area of the fused radix-2 butterfly is

35 % smaller and also the latency is 15 % less than the

discrete radix-2 FFT butterfly parallel implementation. The

area of the fused radix-4 butterfly is 26 % smaller and also

the latency is 13 % less than the discrete radix-4 FFT

butterfly parallel implementation. Each fused butterflies

use fewer rounding operations resulting in a lot of accurate

results than the discrete approaches. The errors for a 64K

purpose FFT are about 25 % less for the fused

implementations.

 Alexandre F. Tenca Multi-operand Floating-point

Addition in this paper demonstrated the feasibleness of

implementing multi- operand floating-point adders to

induce additional accurate operations than equivalent

networks of FPADD2s. The work was focused on 3-input

FP adders however the discussion concerning design

problems and various solutions is additionally applicable to

adders for additional operands. The experimental results

show that the 3-input FP adder design may be synthesized

to reach shorter or similar delays than the network of 2-

input FP adders, with comparable or better area, and

additional accuracy. the capability of this component to get

outputs honoring the commutative property for its inputs is

very advantageous to eliminate the ordering drawback

(non-associative behavior) imposed at the algorithmic rule

level on networks of FPADD2s.

 Yao Tao Three-Operand Floating-Point Adder in

this paper projected an improved design of 3- operand FP

adder. The principle to choose the internal width is given

and also the Realignment technique is used to avoid quite

one sticky bit generated, which may reduce price and avoid

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 3 | Copyright © 2023. JCT Publications. All Rights Reserved

the lost of accuracy. In addition, an OR-logic network

rather than the comparer to observe the catastrophic

cancellation is used within the improved one. Many

sophisticated techniques, like compound adder and LZA,

are used to optimize the design. The experiment shows that

our design has a competitive area and delays by

comparison with each a basic 3- operand FP adder and a

network of 2-operand FP adders. The perform verification

shows that our design has a similar accuracy as a full

precision FP adder.

A. Problem Formulation

 Fast Fourier transform (FFT) circuitry consists of

several consecutive multipliers and adders over complex

numbers; hence an appropriate number representation must

be chosen wisely. Most of the FFT architectures have been

using fixed-point arithmetic, until recently those FFTs

based on floating-point (FP) operations grow. The main

advantage of FP over fixed-point arithmetic is the wide

dynamic range it introduces; but at the expense of higher

cost. Moreover, use of IEEE-754-2008 standard for FP

arithmetic allows for an FFT coprocessor in collaboration

with general-purpose processors.

 This offloads compute-intensive tasks from the

processors and leads to higher performance. The main

drawback of the FP operations is their slowness in

comparison with the fixed-point counterparts. A way to

speed up the FP arithmetic is to merge several operations in

a single FP unit, and hence save delay, area, and power

consumption. Using redundant number systems is another

well-known way of overcoming FP slowness, where there

is no word-wide carry propagation within the intermediate

operations. The conversion, from non-redundant, to a

redundant format is a carry-free operation; however, the

reverse conversion requires carry propagation. This makes

redundant representation more useful where many

consecutive arithmetic operations are performed prior to

the final result.

III. METHODOLOGY

 The FFT could be implemented in hardware based on

an efficient algorithm in which the N-input FFT

computation is simplified to the computation of two (N/2)-

input FFT. We are also implementing proposed butterfly

unit in 8 point FFT. The Continuing this decomposition

leads to2-input FFT block, also known as butterfly unit.

The proposed butterfly unit is actually a complex fused-

multiply add with FP operands. Expanding the complex

numbers, Fig. 4 shows the required modules.

Fig.4 FFT butterfly architecture with expanded complex

numbers

 According to Fig.4 the constituent operations for

butterfly unit are a dot-product (e.g., BreWim + BimWre)

followed by an addition/subtraction which leads to the

proposed FDPA operation (e.g.,BreWim +Bim Wre +Aim

). Realization information of FDPA, over FP operands, is

discussed below. The exponents of all the inputs are

assumed and represented in subtracting the bias), while the

significant of Are, Aim, Bre, and Bim are represented in

BSD. Within this representation every binary position takes

values by one negative-weighted bit (negabit) and one

positive-weighted bit (posibit). The carry-limited addition

circuitry for BSD numbers is shown in Fig. 5, where

capital (small) letters symbolizesnega bits (posibits). The

critical path delay of this adder consists of three full-

adders. The Projected FDPA consist of an unnecessary FP

multiplier tag on by an unneeded FP three-operand adder.

Fig.5 BSD adder (two-digit slice)

A. Proposed Redundant Floating-Point Multiplier

 The proposed multiplier, likewise other parallel

multipliers, consists of two major steps, namely, partial

product generation (PPG) and PP reduction (PPR).

Though, different to the traditional multipliers, our

multiplier feature remains the product in unnecessary

format and therefore ether's no need for the final carry-

propagating adder. The exponents of the input operands are

taken care of within the same means as is completed in the

standard FP multipliers; Though, normalization and

rounding error are left to be exhausted subsequent block of

the butterfly architecture (i.e., three-operand adder).

IV. IMPLEMENTATION

A. Computer Arithmetic Overview

 Computer arithmetic is concerned with the

hardware realization of mathematical formulas, algorithms,

and complex models from a theoretical world. Hardware

functions calculate -point and scientific notations (floating-

point).

Fixed-Point Representation Overview and Implementation

Issues In computing, a fixed-point number representation is

a real data type for a number that has a fixed number of

digits after (and sometimes before) the radix point. Fixed-

point number representations are much less complicated

(and less computationally demanding) than floating point

number representations [6]. Fixed-point numbers are useful

for representing fractional values, usually in base 2, when

the executing processor has no floating point unit (FPU) or

if fixed-point provides improved performance or accuracy

for the application at hand [7]. A fixed-point number may

be written as I.F, where I represents the integer part, '.' is

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 4 | Copyright © 2023. JCT Publications. All Rights Reserved

the radix point, and F represents the fractional part. In

binary fixed-point numbers, each magnitude bit represents

a power of two, while each fractional bit represents an

inverse power of two.

B. Fixed-Point Precision Loss and Overflow

 Information may be lost in fixed point operations

when they produce results that have more bits than the

operands [8]. For instance, the result of fixed point

multiplication could potentially have as many bits as the

sum of the number of bits in the two operands. In order to

fit the result into the same number of bits as the operands,

the answer must be rounded or truncated [9]. If this is the

case, the choice of which bits to keep is very important.

For instance when multiplying two fixed point numbers

with the same format, with I integer bits, and F fractional

bits, the answer Could have up to 2*I integer bits, and 2*F

fractional bits [9].

 Most fixed-point multiplication procedures use

the same result format as the operands. This has the effect

of keeping the middle bits; the I least significant integer

bits, and the F most significant fractional bits. Fractional

bits below this value represent a relatively minor precision

loss. If any integer bits are lost, however, the value will be

radically inaccurate. This is considered to be an overflow,

and needs to be avoided in embedded calculations [10].

 An Overview of the Floating-Point Fused

Multiply-Add (FMA) Operation In 1990, IBM introduced

the floating-point fused multiply-add operation on the

RISC System 6000 (IBM RS/6000) chip [3], [4]. IBM

recognized that several advanced applications, specifically

those with dot products, are routinely performed with a

floating point multiplication, A x B, immediately followed

by a floating-point addition, (A x B) result + C, ad

infinitum. To increase the performance of these

applications, a new unit was created that merged a discrete

floating-point multiplier and floating-point adder into a

single hardware block the floating-point fused multiply-add

unit. This floating-point arithmetic unit, shown in Figure

4.2, executes the equation (A x B) + C in a single

instruction. With the continued demand for 3D graphics,

multimedia applications, and new advanced processing

algorithms, the IEEE has included the fused multiply-add

operation into the 754-2008 standard [2]. Even though the

fused multiply-add architecture has troublesome latencies,

high power consumption, and performance degradation

with single-instruction execution, more and more

microprocessor designs implement floating point fused

multiply-add units in their silicon.

Fig. 6 FFT Spectrum Calculation Using: Double Precision

Floating-Point, Single PrecisionFloating-Point and 12-bit

Fixed-Point Without and With Scaling

Fig.7Block Diagram of a Floating-point Fused Multiply-

add Unit, reduced from

V. SIMULATION RESULTS

A. Simulation Results

The Design the 8 point FFT using the proposed FP-

Butterfly unit implemented in Modelsim andXilinx ISE

simulation result introduced in this chapter. In order to

evaluate the designs the area,delay and power consumption

are estimated using the simulation.

Fig.7 shows start the Xilinx ISE Project Navigator.

Choose File New Project. A popupdialog box will appear.

Enter tutor1 for Project Name. For the Project Location,

select thedirectory where the project will be stored for your

project. Click Next to move to the deviceproperties page.

Fill in the properties. Click Next to proceed to the Create

New Source windowin the New Project Wizard.

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 5 | Copyright © 2023. JCT Publications. All Rights Reserved

Fig.8 Define Module

Fig.8 Click the New Source button in the New Project

Wizard. Select VHDL Module as the source type. Type in

the file name counter. Verify that the Add to project

checkbox is selected. Click Next. Declare the ports for the

counter design by filling in the port information as shown

infig.5.2. Click next, and then Finish in the New Source

Wizard - Summary dialog box to complete the new source

file template.

Fig.9 New Project in ISE

Fig.9 The Xilinx Project Navigator is the heart of the

Xilinx ISE software. Editing, compiling, and programming

can all be accomplished through the Project Navigator.

This screen shot shows the default layout which includes

the Module View, Process View, Console, and

Editing/Viewing windows. The source file containing the

entity/architecture pair displays in the Workspace, and the

counter displays in the Source tab, as shown in fig.9.

Fig.10 Synthesis report of proposed system

Fig.10 depicts the synthesis report of proposed system. In

this report device utilization summary are given. In this

discuss how many devices are used and available and how

many percentages utilization are given. In this proposed

system used are number of slice register, Look-up-tables,

number of AND/OR logic gates, number of filp-flop.

Fig.11 Simulation output of proposed system

Fig.11 shows the simulation output of entire proposed

system. This is a simulation output of FFT butterfly

architecture with expanded complex numbers.

Fig.12 RTL view of top module

Fig.12 demonstrates the RTL view of top module that is

FFT. After the HDL synthesis phase of the synthesis

process, use the RTL Viewer to view a schematic

representation of the preoptimized design in terms of

generic symbols that are independent of the targeted Xilinx

device, for example, in terms of adders, multipliers,

counters, AND gates, and OR gates.

Fig.13 overall design

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 6 | Copyright © 2023. JCT Publications. All Rights Reserved

Fig.13 shows the overall design of proposed system. The

overall design of proposed system shows combination of

all small entity used in formation of modified work, which

gives optimized and efficient output in comparison of

previous work. The area and power consumption of

proposed work gives efficient output in comparison of

work done before present time.

Fig.14 splitter

Fig.14 demonstrates the splitter. There are many devices

used for design splitter. Splitter should be used for the

divide/split 8 point, 16 point and 32 point fast Fourier

transform circuit into two or multiple small same bit like if

we split 8 bit FFT into two different form splitter should be

implemented in two 4 bit FFT. Similarly if 16 point FFT

split into four different small size bit it should be taken as

four 4 bit FFT.

Fig.15 Combiner

Fig.15 elaborates the combiner. Combiner should be used

for the combination of two small size bit architecture into a

big architecture for example if we combined to 8 bit

architecture then output of combiner should be 16 bit

architecture. The application of combiner is mostly in

streaming videos in which number of frame architecture

should be combined to give better and efficient result.

Fig.16 butterfly unit

Fig.16 shows butterfly unit. In this there are many adder,

subtracted and floating point multiplier are used. The fast

Fourier transform algorithms, a butterfly is a portion of the

Computation that combines the results of smaller discrete

Fourier transforms (DFTs) into a larger DFT, or vice versa

(breaking a larger DFT up into sub transforms). The name

"butterfly" comes from the shape of the data-flow diagram

in the radix-2 case.

Fig.16 FP multiplier

Fig.16 elaborates the FP multiplier. In this there are many

adders; FP three operand adders and booth multiplier are

used. This multiplier is mainly used to multiply two

floating point numbers. Separate algorithm is essential for

multiplication of these numbers. Here multiplication

operations simple than addition this is especially true if it

are using a 32-bit format. Table 5.1 shows the result

summary of proposed research work. The proposed work is

design 8point FFT. In this Power consumption (W) is

1.068; Delay (ns) is 107.053, Area is LUT 67255,Slice

register 651, IOB 139.

VI. CONCLUSION AND FUTURE WORK

In this research work proposed an improved

architecture of a high-speed FP butterfly, which is faster

http://www.jctjournals.com ISSN(ONLINE):2278 – 3814

P a g e 7 | Copyright © 2023. JCT Publications. All Rights Reserved

than previous works but at the cost of higher area. In this

proposed work proposes a fast FP butterfly unit using a

devised FP fused-dot product-add (FDPA) unit. In this

research is applying dual-path FP architecture to the three-

operand FP adder and using other redundant FP

representations. Moreover, use of improved techniques in

the termination phase of the design (i.e., redundant LZD,

normalization, and rounding) would lead to faster

architectures, though higher area costs are expected. In this

proposed work Area is reduced. In the proposed work the

design of two new fused floating-point arithmetic units and

their application to the implementation of FFT butterfly

operations. In this research work 32 point FFT architecture

is used. In this Combiner and splitter are used. In this

proposed work floating point arithmetic is used. In this

proposed work area is reduced than previous research work

and power consumption is less. This proposed work

describes two fused floating-point operations and applies

them to the implementation of fast Fourier transform (FFT)

processors.

In the future work the design stage of the abolition

of the use of improved techniques (ie, repeating LZD,

normalize, and rounding) of the estimated costs, however,

led to faster architectures. The fusing concept could be

extended to other types of computation extensive

applications and might result in delay, area and power

consumption reduction. As a future work, one could

modify the proposed design to include a dual-path FP

architecture which would be expected to have lower

latency but at the cost of more area. Further improvement

is achieved by the dual-path algorithm. The dual-path

floating-point fused dot product unit consists of a far path

and a close path and one path is selected based on the

exponent difference.

References
[1] Kaivani, Amir, and SeokbumKo. "Floating-point

butterfly architecture based on binary signed-digit

representation." IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 24.3 (2016): 1208-

1211.

[2] Swartzlander, Earl E., and Hani HM Saleh. "FFT

implementation with fused floating- point

operations." IEEE transactions on computers 61.2

(2012): 284-288.

[3] Tenca, Alexandre F. "Multi-operand floating-point

addition." Computer Arithmetic, 2009. ARITH 2009.

19th IEEE Symposium on. IEEE, 2009.

[4] Tao, Yao, et al. "Three-operand floating-point adder."

Computer and Information Technology (CIT), 2012

IEEE 12th International Conference on. IEEE, 2012.

[5] Nielsen, AsgerMunk, et al. "An IEEE compliant

floating-point adder that conforms with the pipeline

packet-forwarding paradigm." IEEE Transactions on

Computers 49.1 (2000): 33-47.

[6] Min, Jae Hong, Seong-Wan Kim, and Earl E.

Swartzlander. "A floating-point fused FFT butterfly

arithmetic unit with merged multiple-constant

multipliers." Signals, Systems and Computers

(ASILOMAR), 2011 Conference Record of the Forty

Fifth Asilomar Conference on. IEEE, 2011.

[7] B. Parhami, Computer Arithmetic: Algorithms and

Hardware Designs, 2nd ed. New York, NY, USA:

Oxford Univ. Press, 2010.

[8] Kaivani, Amir, and Seok-Bum Ko. "Area efficient

floating-point FFT butterfly architectures based on

multi-operand adders." Electronics Letters 51, no. 12

(2015): 895- 897.

[9] BehroozPrahami, Computer Arithmetic Algorithms

and Hardware Designs, New York: Oxford

University Press, 1999.

[10] A. V. Oppenheim, R.W. Schafer, and J. R. Buck,

Discrete-Time Signal Processing, Second Edition,

Upper Saddle River: Prentice Hall, 1999.

