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Abstract— This reveals the motivation to develop a high-speed FP butterfly design to mitigate FP slowness. 

This brief proposes a fast FP butterfly unit employing a devised FP fused dot product-add (FDPA) unit. 

During this planned 32 point FFT design. Floating-point arithmetic is enticing for the implementation for a 

spread of Digital Signal processing (DSP) applications as a result of it permits the designer and user to 

consider the algorithms and design without concern about numerical problems. In the past, many DSP 

applications used fixed point arithmetic due to the high cost (in delay, silicon area, and power consumption) of 

floating-point arithmetic units. The analysis results justify that the planned FP butterfly design is much faster 

than previous counterparts but at the value of additional area. Within the planned work design area is reduce 

than previous FFT design. The planned design of this analysis the logic size, area and power consumption 

using Xilinx 14.2.Fast Fourier transform (FFT) coprocessor, having a significant impact on the performance 

of communication systems, has been a hot topic of research for many years. The FFT function consists of 

consecutive multiply add operations over complex numbers, dubbed as butterfly units. Fast Fourier transform 

(FFT) is one amongst the most necessary tools in digital signal processing in addition as communication 

system as a result of transforming time domain to S-plane is very convenient using FFT. Applying floating-

point(FP) arithmetic to FFT architectures, specifically butterfly units, has become additional common 

recently. However, the main drawback of FP butterfly is its slowness as compared with its fixed point 

counterpart.  
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I. INTRODUCTION 
 A floating-point number system is enticing for a 

variety of signal processing applications due to the wide 

dynamic range that provides freedom from scaling and 

overflows considerations that arise with fixed-point 

implementations. Among the varied floating-point number 

formats, IEEE- 754 single precision normal is used during 

this paper [1]. The only precision format is 32-bits 

consisting of a 1-bit sign, an 8-bit exponent, and a 23-bit 

mantissa. Additionally, there is one arithmetic operations. 

 Therefore, this paper examines a complex 

butterfly arithmetic operation within which every element 

(i.e., real and imaginary) of the data is represented by 32-

bit single precision floating point numbers. However, 

floating-point arithmetic units have additional space, delay 

and power consumption than fixed point arithmetic units. 

A floating point number representation can simultaneously 

provide a large range of numbers and a high degree of 

precision. As a result, a portion of most microprocessors is 

often dedicated to hardware for floating point computation. 

Unlike fixed-point arithmetic, each computer company 

developed their own standards for the floating-point 

representation in electronic machines until the IEEE- 754 

standard was introduced in 1985. Floating-point operations 

are widely used for advanced applications such as 3D 

graphics, signal processing, and scientific computations. 

 These require a wide dynamic range. Fixed-point 

arithmetic is not sufficient for this, but floating point 

arithmetic, such as that which is specified in IEEE-754 

Standard for floating-point arithmetic, can represent a wide 

range of numbers from tiny fractional numbers to nearly 

infinitely huge numbers so that the overflow and underflow 

are avoided. This paper presents improved architecture 

designs and implementation details for a floating-point 

fused two-term dot product unit. The floating-point fused 
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dot product unit is useful for many digital signal processing 

(DSP) applications. 

 

Floating-Point Arithmetic 

 Floating-point arithmetic is being used, and 

preferred over fixed-point, in many applications due to the 

fact that it provides a large range of numbers and a high 

degree of precision. It is also common to be used in a 

variety of Digital Signal Processing (DSP) applications 

because it relieves the designer of numerical issues e.g., 

scaling, overflow, and underflow. A floating-point number, 

as represented in Eqn. 1.1, consists of four components; 

namely, sign, significant, base and exponent.  

 

 
               Fig.1 Butterfly Architecture (DIT)  

 

 There are two methods to implement a butterfly 

unit: 1) conventional 2) Golub's approach. Fig. .2 shows 

the implementation of a DIT butterfly with expanded 

complex numbers using the conventional approach. 

Accordingly, it consists of four multipliers and six 

adders/subtracters. Its hould be noted that, given the 

constant values of twiddle factors (W), the multipliers are 

constant and can be implemented via a series of shifters 

and adders in lieu of the multiplier tree.  

 

 
Fig.2 DIT Butterfly architecture using conventional 

approach 

  

Fig. 3 shows the implementation of a DIT butterfly unit 

based on the Golub's approach. Accordingly, it consists of 

three multipliers and nine adders/subtracters. 

 
Fig.3 DIT Butterfly architecture using Golub's approach 

 

II. LITERATURE REVIEW 

 Amir Kaivani et.al -Point Butterfly Architecture 

Based on Binary Signed-Digitin this paper planned a high-

speed FP butterfly design that is faster than previous works 

however at the value of higher space. The reason for this 

speed improvement is twofold: 1) BSD illustration of the 

significant that eliminates carry-propagation and 2) the 

new FDPA unit planned during this brief. This unit 

combines multiplications and additions needed inFP 

butterfly; therefore higher speed is achieved by eliminating 

additional LZD, normalization, and rounding units. More 

analysis is also envisaged on applying dual-path FP design 

to the threeoperandFP adder and using different redundant 

FP representations. Moreover, use of improved techniques 

within the termination phase of the planning (i.e., 

redundant LZD, standardization, and rounding) would lead 

to faster architectures, although higher area prices are 

expected. 

 Earl E. Swartzlander Jr –Point this paper 

describes the planning of 2 new fused floating-point 

arithmetic units andtheir application to the implementation 

of FFT butterfly operations. Though the fused add subtract 

unit is particular to FFT applications, the fused dot product 

is applicable to a wide style of signal process applications. 

Each the fused real unit and also the fused add-subtract unit 

are smaller than parallel implementations created with 

discrete floating-point adders and multipliers. The fused 

dot product is faster than the standard implementation, 

since rounding and normalization isn't needed as a part of 

every multiplication. Due to longer interconnections, the 

fused add-subtract unit is slightly slower than the discrete 

implementation. The area of the fused radix-2 butterfly is 

35 % smaller and also the latency is 15 % less than the 

discrete radix-2 FFT butterfly parallel implementation. The 

area of the fused radix-4 butterfly is 26 % smaller and also 

the latency is 13 % less than the discrete radix-4 FFT 

butterfly parallel implementation. Each fused butterflies 

use fewer rounding operations resulting in a lot of accurate 

results than the discrete approaches. The errors for a 64K 

purpose FFT are about 25 % less for the fused 

implementations. 

 Alexandre F. Tenca Multi-operand Floating-point 

Addition in this paper demonstrated the feasibleness of 

implementing multi- operand floating-point adders to 

induce  additional accurate operations than equivalent 

networks of FPADD2s. The work was focused on  3-input 

FP adders however the discussion concerning design 

problems and various solutions is additionally applicable to 

adders for additional operands. The experimental results 

show that the 3-input FP adder design may be synthesized 

to reach shorter or similar delays than the network of 2-

input FP adders, with comparable or better area, and 

additional accuracy. the capability of this component to get 

outputs honoring the commutative property for its inputs is 

very advantageous to eliminate the ordering drawback 

(non-associative behavior) imposed at the algorithmic rule 

level on networks of FPADD2s. 

 Yao Tao Three-Operand Floating-Point Adder in 

this paper projected an improved design of 3- operand FP 

adder. The principle to choose the internal width is given 

and also the Realignment technique is used to avoid quite 

one sticky bit generated, which may reduce price and avoid 
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the lost of accuracy. In addition, an OR-logic network 

rather than the comparer to observe the catastrophic 

cancellation is used within the improved one. Many 

sophisticated techniques, like compound adder and LZA, 

are used to optimize the design. The experiment shows that 

our design has a competitive area and delays by 

comparison with each a basic 3- operand FP adder and a 

network of 2-operand FP adders. The perform verification 

shows that our design has a similar accuracy as a full 

precision FP adder. 

 

A. Problem Formulation 

 Fast Fourier transform (FFT) circuitry consists of 

several consecutive multipliers and adders over complex 

numbers; hence an appropriate number representation must 

be chosen wisely. Most of the FFT architectures have been 

using fixed-point arithmetic, until recently those FFTs 

based on floating-point (FP) operations grow. The main 

advantage of FP over fixed-point arithmetic is the wide 

dynamic range it introduces; but at the expense of higher 

cost. Moreover, use of IEEE-754-2008 standard for FP 

arithmetic allows for an FFT coprocessor in collaboration 

with general-purpose processors. 

  This offloads compute-intensive tasks from the 

processors and leads to higher performance. The main 

drawback of the FP operations is their slowness in 

comparison with the fixed-point counterparts. A way to 

speed up the FP arithmetic is to merge several operations in 

a single FP unit, and hence save delay, area, and power 

consumption. Using redundant number systems is another 

well-known way of overcoming FP slowness, where there 

is no word-wide carry propagation within the intermediate 

operations. The conversion, from non-redundant, to a 

redundant format is a carry-free operation; however, the 

reverse conversion requires carry propagation. This makes 

redundant representation more useful where many 

consecutive arithmetic operations are performed prior to 

the final result.  

 

III. METHODOLOGY 

   

         The FFT could be implemented in hardware based on 

an efficient algorithm in which the N-input FFT 

computation is simplified to the computation of two (N/2)-

input FFT. We are also implementing proposed butterfly 

unit in 8 point FFT. The Continuing this decomposition 

leads to2-input FFT block, also known as butterfly unit. 

The proposed butterfly unit is actually a complex fused-

multiply add with FP operands. Expanding the complex 

numbers, Fig. 4 shows the required modules.  

 

 
Fig.4 FFT butterfly architecture with expanded complex 

numbers 

  According to Fig.4 the constituent operations for 

butterfly unit are a dot-product (e.g., BreWim + BimWre) 

followed by an addition/subtraction which leads to the 

proposed FDPA operation (e.g.,BreWim +Bim Wre +Aim 

). Realization information of FDPA, over FP operands, is 

discussed below. The exponents of all the inputs are 

assumed and represented in subtracting the bias), while the 

significant of Are, Aim, Bre, and Bim are represented in 

BSD. Within this representation every binary position takes 

values by one negative-weighted bit (negabit) and one 

positive-weighted bit (posibit). The carry-limited addition 

circuitry for BSD numbers is shown in Fig. 5, where 

capital (small) letters symbolizesnega bits (posibits). The 

critical path delay of this adder consists of three full-

adders. The Projected FDPA consist of an unnecessary FP 

multiplier tag on by an unneeded FP three-operand adder.  

 

 
Fig.5 BSD adder (two-digit slice)  

 

A. Proposed Redundant Floating-Point Multiplier 

  The proposed multiplier, likewise other parallel 

multipliers, consists of two major steps, namely, partial 

product generation (PPG) and PP reduction (PPR). 

Though, different to the traditional multipliers, our 

multiplier feature remains the product in unnecessary 

format and therefore ether's no need for the final carry-

propagating adder. The exponents of the input operands are 

taken care of within the same means as is completed in the 

standard FP multipliers; Though, normalization and 

rounding error are left to be exhausted subsequent block of 

the butterfly architecture (i.e., three-operand adder). 

 

IV. IMPLEMENTATION 

A. Computer Arithmetic Overview 

  Computer arithmetic is concerned with the 

hardware realization of mathematical formulas, algorithms, 

and complex models from a theoretical world. Hardware 

functions calculate -point and scientific notations (floating-

point). 

Fixed-Point Representation Overview and Implementation 

Issues In computing, a fixed-point number representation is 

a real data type for a number that has a fixed number of 

digits after (and sometimes before) the radix point. Fixed-

point number representations are much less complicated 

(and less computationally demanding) than floating point 

number representations [6]. Fixed-point numbers are useful 

for representing fractional values, usually in base 2, when 

the executing processor has no floating point unit (FPU) or 

if fixed-point provides improved performance or accuracy 

for the application at hand [7]. A fixed-point number may 

be written as I.F, where I represents the integer part, '.' is 



http://www.jctjournals.com  ISSN(ONLINE):2278 – 3814 

 

 

P a g e 4 | Copyright © 2023. JCT Publications. All Rights Reserved 

 

the radix point, and F represents the fractional part. In 

binary fixed-point numbers, each magnitude bit represents 

a power of two, while each fractional bit represents an 

inverse power of two. 

 

B. Fixed-Point Precision Loss and Overflow 

  Information may be lost in fixed point operations 

when they produce results that have more bits than the 

operands [8]. For instance, the result of fixed point 

multiplication could potentially have as many bits as the 

sum of the number of bits in the two operands. In order to 

fit the result into the same number of bits as the operands, 

the answer must be rounded or truncated [9]. If this is the 

case, the choice of which bits to keep is very important. 

For instance when multiplying two fixed point numbers 

with the same format, with I integer bits, and F fractional 

bits, the answer Could have up to 2*I integer bits, and 2*F 

fractional bits [9]. 

  Most fixed-point multiplication procedures use 

the same result format as the operands. This has the effect 

of keeping the middle bits; the I least significant integer 

bits, and the F most significant fractional bits. Fractional 

bits below this value represent a relatively minor precision 

loss. If any integer bits are lost, however, the value will be 

radically inaccurate. This is considered to be an overflow, 

and needs to be avoided in embedded calculations [10]. 

  An Overview of the Floating-Point Fused 

Multiply-Add (FMA) Operation In 1990, IBM introduced 

the floating-point fused multiply-add operation on the 

RISC System 6000 (IBM RS/6000) chip [3], [4]. IBM 

recognized that several advanced applications, specifically 

those with dot products, are routinely performed with a 

floating point multiplication, A x B, immediately followed 

by a floating-point addition, (A x B) result + C, ad 

infinitum. To increase the performance of these 

applications, a new unit was created that merged a discrete 

floating-point multiplier and floating-point adder into a 

single hardware block the floating-point fused multiply-add 

unit. This floating-point arithmetic unit, shown in Figure 

4.2, executes the equation (A x B) + C in a single 

instruction. With the continued demand for 3D graphics, 

multimedia applications, and new advanced processing 

algorithms, the IEEE has included the fused multiply-add 

operation into the 754-2008 standard [2]. Even though the 

fused multiply-add architecture has troublesome latencies, 

high power consumption, and performance degradation 

with single-instruction execution, more and more 

microprocessor designs implement floating point fused 

multiply-add units in their silicon. 

 
Fig. 6 FFT Spectrum Calculation Using: Double Precision 

Floating-Point, Single PrecisionFloating-Point and 12-bit 

Fixed-Point Without and With Scaling  

 

 
Fig.7Block Diagram of a Floating-point Fused Multiply-

add Unit, reduced from 

 

V. SIMULATION RESULTS 

A. Simulation Results 

The Design the 8 point FFT using the proposed FP-

Butterfly unit implemented in Modelsim andXilinx ISE 

simulation result introduced in this chapter. In order to 

evaluate the designs the area,delay and power consumption 

are estimated using the simulation. 

Fig.7  shows start the Xilinx ISE Project Navigator. 

Choose File New Project. A popupdialog box will appear. 

Enter tutor1 for Project Name. For the Project Location, 

select thedirectory where the project will be stored for your 

project. Click Next to move to the deviceproperties page. 

Fill in the properties. Click Next to proceed to the Create 

New Source windowin the New Project Wizard.  
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Fig.8 Define Module  

 

Fig.8 Click the New Source button in the New Project 

Wizard. Select VHDL Module as the source type. Type in 

the file name counter. Verify that the Add to project 

checkbox is selected. Click Next. Declare the ports for the 

counter design by filling in the port information as shown 

infig.5.2. Click next, and then Finish in the New Source 

Wizard - Summary dialog box to complete the new source 

file template.  

 

 
Fig.9 New Project in ISE  

 

Fig.9  The Xilinx Project Navigator is the heart of the 

Xilinx ISE software. Editing, compiling, and programming 

can all be accomplished through the Project Navigator. 

This screen shot shows the default layout which includes 

the Module View, Process View, Console, and 

Editing/Viewing windows. The source file containing the 

entity/architecture pair displays in the Workspace, and the 

counter displays in the Source tab, as shown in fig.9.  

 

 
Fig.10 Synthesis report of proposed system  

 

Fig.10 depicts the synthesis report of proposed system. In 

this report device utilization summary are given. In this 

discuss how many devices are used and available and how 

many percentages utilization are given. In this proposed 

system used are number of slice register, Look-up-tables, 

number of AND/OR logic gates, number of filp-flop. 

 
Fig.11 Simulation output of proposed system  

 

Fig.11 shows the simulation output of entire proposed 

system. This is a simulation output of FFT butterfly 

architecture with expanded complex numbers.  

 

 
Fig.12 RTL view of top module 

 

Fig.12 demonstrates the RTL view of top module that is 

FFT. After the HDL synthesis phase of the synthesis 

process, use the RTL Viewer to view a schematic 

representation of the preoptimized design in terms of 

generic symbols that are independent of the targeted Xilinx 

device, for example, in terms of adders, multipliers, 

counters, AND gates, and OR gates.  

 

 
Fig.13 overall design  
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Fig.13 shows the overall design of proposed system. The 

overall design of proposed system shows combination of 

all small entity used in formation of modified work, which 

gives optimized and efficient output in comparison of 

previous work. The area and power consumption of 

proposed work gives efficient output in comparison of 

work done before present time.  

 

 
Fig.14 splitter  

 

Fig.14 demonstrates the splitter. There are many devices 

used for design splitter. Splitter should be used for the 

divide/split 8 point, 16 point and 32 point fast Fourier 

transform circuit into two or multiple small same bit like if 

we split 8 bit FFT into two different form splitter should be 

implemented in two 4 bit FFT. Similarly if 16 point FFT 

split into four different small size bit it should be taken as 

four 4 bit FFT.  

 

 
Fig.15 Combiner  

 

Fig.15 elaborates the combiner. Combiner should be used 

for the combination of two small size bit architecture into a 

big architecture for example if we combined to 8 bit 

architecture then output of combiner should be 16 bit 

architecture. The application of combiner is mostly in 

streaming videos in which number of frame architecture 

should be combined to give better and efficient result. 

 
Fig.16 butterfly unit  

 

Fig.16 shows butterfly unit. In this there are many adder, 

subtracted and floating point multiplier are used. The fast 

Fourier transform algorithms, a butterfly is a portion of the 

Computation that combines the results of smaller discrete 

Fourier transforms (DFTs) into a larger DFT, or vice versa 

(breaking a larger DFT up into sub transforms). The name 

"butterfly" comes from the shape of the data-flow diagram 

in the radix-2 case.  

 

 
Fig.16 FP multiplier  

 

Fig.16 elaborates the FP multiplier. In this there are many 

adders; FP three operand adders and booth multiplier are 

used. This multiplier is mainly used to multiply two 

floating point numbers. Separate algorithm is essential for 

multiplication of these numbers. Here multiplication 

operations simple than addition this is especially true if it 

are using a 32-bit format. Table 5.1 shows the result 

summary of proposed research work. The proposed work is 

design 8point FFT. In this Power consumption (W) is 

1.068; Delay (ns) is 107.053, Area is LUT 67255,Slice 

register 651, IOB 139.  

 

VI. CONCLUSION AND FUTURE WORK 

In this research work proposed an improved 

architecture of a high-speed FP butterfly, which is faster 
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than previous works but at the cost of higher area. In this 

proposed work proposes a fast FP butterfly unit using a 

devised FP fused-dot product-add (FDPA) unit. In this 

research is applying dual-path FP architecture to the three-

operand FP adder and using other redundant FP 

representations. Moreover, use of improved techniques in 

the termination phase of the design (i.e., redundant LZD, 

normalization, and rounding) would lead to faster 

architectures, though higher area costs are expected. In this 

proposed work Area is reduced. In the proposed work the 

design of two new fused floating-point arithmetic units and 

their application to the implementation of FFT butterfly 

operations. In this research work 32 point FFT architecture 

is used. In this Combiner and splitter are used. In this 

proposed work floating point arithmetic is used. In this 

proposed work area is reduced than previous research work 

and power consumption is less. This proposed work 

describes two fused floating-point operations and applies 

them to the implementation of fast Fourier transform (FFT) 

processors. 

In the future work the design stage of the abolition 

of the use of improved techniques (ie, repeating LZD, 

normalize, and rounding) of the estimated costs, however, 

led to faster architectures. The fusing concept could be 

extended to other types of computation extensive 

applications and might result in delay, area and power 

consumption reduction. As a future work, one could 

modify the proposed design to include a dual-path FP 

architecture which would be expected to have lower 

latency but at the cost of more area. Further improvement 

is achieved by the dual-path algorithm. The dual-path 

floating-point fused dot product unit consists of a far path 

and a close path and one path is selected based on the 

exponent difference. 
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