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Abstract— A "Morse" lattice, a square lattice bonded via the 

Morse potential, was studied in this paper via molecular 

dynamics to demonstrate the temperature effects on the stress 

and strain of the nanostructured materials. Only two-body 

potential was used here without considering angle bending or 

torsion of bonds. Velocity scaling technique was implemented in 

molecular dynamics to maintain the simulated system at a 

desired temperature. Thermal stresses were observed when 

volume expansion was not allowed. When a positive strain was 

applied to the lattice, stress relaxation was observed as the 

temperature increased. Uniaxial tension simulations were 

conducted at various temperatures to study stress-strain curves. 

It was found that the material failure stress and strain were 

smaller at high temperature. In addition, the histograms of 

atomistic velocities at the final equilibrium states were studied 

and compared to the theoretical Boltzmann distribution at 

various. 

 
Keywords— molecular dynamics, Morse lattice, temperature, 

stress. 

I. INTRODUCTION 

Recent developments in nanotechnology demand that 

nano/micro scale building blocks will complement and 

enhance new engineering techniques in the relevant 

technology areas, including materials science. It has been 

known that materials with specific structures at the nanoscale 

often have unique optical, electronic, or mechanical properties. 

For example, carbon nanotubes ([1], [2]), which have been 

known as unique-structured materials, have extraordinary 

material and electrical properties. They have been used to 

design novel nanoscale composites and devices. Therefore, 

studying mechanical behaviours of nano-structured materials 

become vital in the current revolution of material and machine 

design. 

Numerical methods have been playing an important role in 

engineering design procedures. In specific, molecular 

dynamics (MD) is a powerful tool to clarify complex physical 

phenomena at the nanoscale. MD employs classical 

Lagrangian mechanics, and the motion of atoms follow 

Newton's second law. MD has been used to study mechanical 

behavior of nanocomposites ([3]-[5]) and nanodevices ([6]-[7]) 

as well as the material phase changing problems [8]. However, 

it has been known that MD has limitations in both length and 

time scales. 

More and more research studies have been conducted to 

elucidate how materials behave differently at different scales. 

For example, in ICE melting phenomena, the melting speeds 

are different at different scales [9], including both length and 

time scales. Therefore, the multiscale methods, which can 

handle modeling and simulation in multiple length and time 

scales, draw attentions from researchers and scientists. One 

type of the multiscale methods is called concurrent multiscale 

methods, which employ different methods at different scale 

simultaneously. Some concurrent multiscale methods couple 

the molecular domain with the continuum domain. The 

representative works include the MAAD (Macro-Atomistic-

Ab initio-Dynamics) method [10], the bridging domain 

coupling method ([11]-[13]), and the bridging scale method 

([14], [15]). The bridging domain coupling method has been 

used to study nanocomposites [16] and nanodevices ([17]-

[19]).  Another multiscale approach is using homogenization 

techniques ([20]-[22]) to link the continuum model with the 

molecular model. 

Temperature effects on the material behaviors are always 

interesting topics in various communities. Temperature is 

known as a macroscale quantity representing the averaged 

atomistic kinetic energy at the nanoscale. Mathematical heat 

equations, e.g. the thermal diffusion equation, are only derived 

for the continuum model. In addition, the thermal diffusion 

equation becomes invalid when the scale moves down the 

microscale from the macroscale. At the microscale level, the 

thermal wave equation [23] shall be used. At the nanoscale, 

temperature regulation is always used to maintain the 

simulated system at a constant temperature when using MD. 

The temperature can be evaluated based on the averaged 

atomistic kinetic energy. It should be noted that a temperature 

related homogenization technique ([24]-[26]) can be 

employed in the nanoscale continuum approximation so that 

the temperature effects at the nanoscale can be studied via the 

continuum model. At the nanoscale, it has been investigated 

that the crack propagation speeds were different at different 

temperatures [25]. 

In this paper, MD was used to study temperature effects on 

the stress and strain of a Morse lattice. The thermal stress and 

the stress strain curves at various temperatures were studied. 

The distribution of atomistic velocities at different 

temperatures were plotted and compared to the theoretical 

Boltzmann distributions.  The outline is described as below. 

After introduction, the methodology is described in section 2. 

The simulation procedure and the developed Matlab code (in 
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Appendix) are described in section 3. Results are discussed in 

section 4 followed by the conclusions. 

II. METHODOLOGY 

A. Molecular dynamics 

 

In the MD simulation, the atoms or molecules in the 

simulated system follow the laws of classical mechanics. The 

motion of an atom, e.g. atom i, with mass   , is due to its 

interaction with other atoms in the system according to 

Newton's second law: 

   ⃗   ⃗       
  

  ⃗ 
   (1) 

where  ⃗  is the acceleration of atom   , and the interatomic 

force,  ⃗ , applied on atom i , is derived from the total potential 

energy, 

 ( ⃗ )  
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where   ⃗  and  ⃗  are the atomic positions of atoms i and j 

respectively.     is the pontential function to describe the 

interaction between atoms i and j. 

During the MD simulation, the accelerations are calculated 

based on the forces, i.e. Eq. (1). The velocities are then 

determined by integrating acceleration, and positions by 

integrating velocity. In this paper, the time integrations are 

performed using the velocity Verlet method given below.   
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One of key issues in MD simulation is the temperature 

regulation because the temperature of the simulated system 

would increase infinitely due to the work done by externally 

prescribed force or displacement if only modeling the 

simulated system as an isolated one. To model the heat 

dissipation from the simulated system to the surrounding 

media, a numerical heat bath is implemented in MD 

simulations. A classic approach to adding or subtracting 

kinetic energy to the system is multiplying the velocities of all 

particles with the same global factor, so that the temperature 

can be maintained. In this simplest version of velocity 

rescaling, the factor is chosen to keep the kinetic energy 

constant at each time step by correcting the velocities obtained 

above as 

  (    )  √
  

  
 (    )    (6) 

where    is the desired temperature and    is the temperature 

of the system evaluated after calculating new velocities via Eq. 

(5) at each time step. It shall be noted that the evaluation of 

temperature is based on the averaged atomistic kinetic energy 

of the system. After the velocities are corrected,    is the one 

used to update motion of the atoms in the next time step. 

B. Morse lattice 

 

The purpose of this paper is to show the temperature effects 

on stress analysis of nanostructured materials. The material 

used in the current model is a non-existing material. The 

lattice structure of the atoms is a square-shaped lattice with all 

bond lengths being the same, i.e. the equilibrium bond length 

of           .  The atoms have the same mass of 

1.998467e-26 kg. The potential function used here to describe 

the interaction between bonded atoms is the Morse potential 

function [5]. The potential function and its resulting bond 

force are functions of bond length   and given as 

 ( )    [ 
   (    )      (    )]   (7) 

 ( )      [ 
   (    )     (    )]   (8) 

where the parameters include                   and 

            . It should be noted that we only consider 

two body potential in this paper. 

In the initial state, the atoms were placed in a square lattice 

structure with initial bond length at or very near the 

equilibrium bond length. Each atom was given a small, 

random initial velocity. Fig. 1 shows a sample vector plot 

showing the direction and magnitude of the initial velocities to 

a group of atoms. 

 
Fig.1 Vector plot of initial velocities applied to the atoms in the lattice 
structure 

C. Maxwell-Boltzmann distribution 

 

In an equilibrium system at the nanoscale, the velocities 

(energies) of the atoms will vary greatly, with some atoms at 

very low velocity (low energy) and others with very high 

velocity (high energy). The standard Maxwell-Boltzmann 

distribution plots the probability of atoms at a given velocity 

in three-dimensional space.  A two-dimensional Maxwell-

Boltzmann can be derived from the assumption that the 

velocity in each direction follows an independent Boltzmann 

distribution given by 

 (  )    √
 

     
exp ( 

   
 

    
)      (9) 

The joint probability function is just the product of the 

probabilities (under the assumption of independence). 

 (     )       
 

     
exp ( 

 (  
    

 )

    
)         (10) 

In order to compute the probability that a particle has 

velocity   √  
    

 , the coordinate system is changed to 
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polar coordinates (               ) and integrated with 

respect to the angle   

 ( )   ∫
 

     
exp ( 

   

    
)      

  

 

 
  

   
exp ( 

   

    
)   

  (11) 

 

III. SIMULATION PROCEDURE 

The simulation procedure is described as below with the 

interpretation of Matlab code framework. The Matlab code is 

provided in the appendix. 

The first step in the MD Matlab code was to define the 

potential parameters discussed above in the previous section. 

Although discussion of the results focuses on the Morse lattice 

in the next section of this paper, the Lennard-Jones potential 

was added as an alternative potential function in the Matlab 

code. For all results presented in this paper, a 100 atom x 100 

atom square domain was utilized, which resulted in a 

simulation of N = 10^4 atoms. The atoms were first arranged 

in a square grid at the equilibrium bond length, and then each 

atom was given a small random perturbation. The code for 

initialization of the lattice structure is shown in the Appendix 

in lines 53 - 68. The next step was to assign random initial 

velocities. The equilibrium average velocity was calculated 

due to the Boltzmann distribution. The average velocity was 

decomposed into the x and y direction (horizontal and vertical 

direction) parts with a random variation in velocity, as shown 

in the Appendix in lines 71-75. 

After the model was initiated, the interatomic potential and 

forces needed to be calculated for each pair of atoms. In the 

current model, only two-body interactions were considered 

between atoms directly to the right, left, up, and down in the 

lattice structure. The atomistic forces were then calculated on 

each atom for solving the equations of motion. After 

calculating forces, time integration was performed using the 

velocity Verlet method (see Appendix lines 119-168). 

Accelerations were calculated by dividing force by mass at the 

previous time step. The position was then updated using the 

acceleration and velocity at the previous time step. The 

positions of all atoms were adjusted based on the location of 

the atom at the lower left corner to prevent drifting of the 

lattice. After updating the positions, the forces were updated 

using the method described previously. Using the updated 

forces, stress was calculated at the final time step. 

In order to ensure that the temperature remained constant 

during the MD simulation, at the end of each time step, the 

velocity needed to be scaled. First the test velocity and 

average kinetic energy were calculated. These were used to 

calculate the current temperature, given the kinetic energy. 

Finally, the velocity was scaled, and the loop was repeated for 

the next time step, as shown in the Appendix in lines 170 - 

180. A flowchart of the general code method is provided 

below in Fig. 2. 

 

 
Fig. 2 General Flow Chart of Matlab Code 

 

IV. RESULTS AND DISCUSSIONS 

Generally, when the temperature increases and a material is 

allowed to expand freely, no thermal stresses develop. In the 

case of this simulation, however, expansion of the domain was 

not allowed, thus thermal stresses developed. As shown in Fig. 

3 below the temperature had a significant influence on the 

stress of the Morse lattice.  

 
Fig. 3 Plot of Stress versus Temperature 

As the temperature increased from 0K to 150 K, the stress 

in the material increased as expected. This increase in stress 

was due to the increase in the equilibrium bond length as 

temperature increases.  Since the atoms were restricted within 

a constant volume, this led to an increase in the interatomic 

forces and thus an increase in stress. As temperature increased 

from 200K to 300K, however, the stress began to decrease, 

which was not expected. In order to determine the cause of 

this unexpected decrease in stress, further investigation was 

required. The primary explanation for the decrease in stress 

after 200K is that at this point, the bonds lengths have been 

stretched beyond the length at which the peak force is 

achieved. Beyond this length, the bond force begins to 

decrease, which leads to a decrease in the stress.A possible 
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alternative explanation was formed when observing the 

changes in bond angles, which is not accounted for in the two-

body potential in the current model.
 
When observing the 

localized displacements of the atoms, a possible cause of the 

decrease in stress was identified. The model only accounted 

for two-body potential and the potential did not account for 

any changes in angle between the bonds within the lattice 

structure. For the simulations between 200K and 300K, the 

lattice structure began to deform and some of the squares in 

the lattice structure began to collapse slightly and become 

parallelogram-shaped, as shown in Fig. 4. It shall be noted 

that no potentials due to angle bending or torsion were 

considered so that the Morse lattice can fail even at low 

temperatures compared to real materials 

 
Fig. 4 Deformed lattice structure for 250K simulation 

 

 

Fig. 5 Stress versus Strain Curves at the temperatures of 0K, 50K, 150K, 

200K, 250K, 300K  

 

In order to further study the temperature effect on stress, 

the domain was stretched in the x-direction from strains of 0 

to 0.01 at various temperatures. It has been known that for 

metals as temperature increases the stress decreases, given 

constant strain. A similar result was found in the current study 

for the simulated Morse lattice. The stress versus strain curves 

are plotted to failure in Fig. 5. Failure was characterized by a 

sharp decrease in stress or complete failure of the lattice 

structure. The first noteworthy trend from Fig. 5 was that for 

all tests, the stress was non-zero at ―zero‖ strain, which 

represents the thermal stresses discussed previously. Next, as 

temperature increased from 0K to 300K, the failure stress 

decreased, which is a similar trend discussed previously for 

metals. Another noteworthy takeaway was that at higher 

temperatures (above 150K), the simulation failed prior to 

reaching strain of 0.01. This result may be attributed due to 

instability created by the higher energy state at elevated 

temperature. In order to better illustrate the influence of 

temperature on stress, the stress versus temperature curves 

were plotted at several constant strain values from 0 to 0.010 

in increments of 0.001 in Fig. 6 and Fig. 7. 

 

 
 Fig. 6 Stress versus Temperature curves for different strain values from 0 

to 0.010 

 
Fig. 7 Change in stress due to temperature relative to zero temperature at 

various strains 

 

When observing the curves in Fig. 6 and Fig. 7 some 

interesting temperature effects become apparent. First, the 

stresses at zero strain (ie: thermal stresses discussed 

previously) were very small compared to the stresses induced 

even at the smallest strain studied at 0.001. The zero strain 

curve was actually the only curve that showed an increase in 

stress with temperature. For all other curves, the stress 

decreased as temperature increased. This result shows that the 

strain applied in the x-direction was sufficient such that the 
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thermal stresses were relaxed and thus the material exhibited 

the normal trend that temperature leads to a decrease in stress. 

At last, the molecular dynamics simulation was employed 

to study the temperature effect on the Maxwell-Boltzmann 

distribution, which shows the probability of atoms at a given 

energy state. Indeed, the Maxwell-Boltzmann distribution 

shows how the velocities (energies) of a mixture of atoms 

vary at a particular temperature. The theoretical distribution, 

discussed in Section 2, gives the probability of an atom at a 

given temperature, and integrating the area under the curve 

gives a value of one. The peak of the Boltzmann distribution 

indicates the most probable kinetic energy, and the average 

kinetic energy is greater than the most probable. The 

theoretical and simulated velocity distributions are shown 

below in Fig. 8 and Fig. 9.  

 
Fig. 8 Velocity distribution for several temperatures 

 
Fig. 9 Theoretical Boltzmann distribution overlaid with simulated velocity 

distribution at 50K. 
 

Some interesting observations can be made from the data. 

First, there are no atoms at zero energy, meaning that all 

atoms have some associated velocity (energy). Another 

significant observation from Fig. 8 was that as the temperature 

in the simulation increased, the distributions shifted rightward, 

meaning that the most probable kinetic energy and average 

kinetic energy increased with increasing temperature. In 

addition, as the temperature increased, the distributions 

became more flattened and the range of probable kinetic 

energies increased. Next, at all temperatures, there were very 

few atoms at high energy and low energy and the majority of 

all atoms in the simulation were at intermediate energies. 

These conclusions followed the theoretical distribution almost 

identically, as evidenced in Fig. 9. 

V. CONCLUSIONS 

In this paper, a two-dimensional molecular dynamics (MD) 

code was developed in Matlab to study the temperature effects 

on stress of a nanostructured material. The simulation was 

performed on a fictitious material in a square Morse lattice of 

100 x 100 atoms. The Morse potential was used as the two-

body interatomic potentials and velocity scaling was 

employed to maintain the simulated system at any given 

constant temperature. When restricting expansion, it was 

found that the temperature caused the development of thermal 

stresses in the material, which increased as temperature 

increased. The stress-strain curves at various temperatures 

showed that material failure occurred at lower strain when 

temperature is higher. In addition, the velocity or energy 

distributions were plotted at various temperatures, compared 

well with the theoretical Maxwell-Boltzmann distributions. It 

was shown that as temperature increased, the probability of 

atoms at higher energy increased as well. Although the 

fictitious material with the Morse lattice is studied here, the 

provided Matlab code can be easily modified to study real 

nanostructured materials. 
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APPENDIX: MATLAB CODE 

 
%% 2-D Molecular Dynamics Simulation by Greg Tanner and 

Robert Hart 

%% Parameters 

% Mass of Carbon = 1.998467E-26 kg 

% Boltzmann Constant: kb = 1.3806485E-23 J/K  

%   = 6.908537894295983E-04 (mass of carbon)(nm)^2/((ps)^2*K) 

% Conversion Factor: J =  0.500383543986466E20 (mass of 

carbon)(nm)^2/(ps)^2 

kb = 6.908537894295983E-04; % Boltzmann constant 

Temp_desired = 5; % Temperature in K 

SF = 0.5; % safety factor in time-step 

 

 

%% Lennard Jones Potential 

% LJ parameters: r0 = 0.3834 nm 

%      eps = 3.8253E-22 J = 0.019141089 *(mass of 

carbon)(nm)^2/(ps)^2 

% Force Constant: k = d^2E/dr^2 = 72 eps/r0^2  

%                   = 3.594570704225352 (mass of carbon)/(ps)^2 

% Wave speed: c = sqrt(k*A/(N*m)) = sqrt(k*r0^2/(mass of carbon))  

%               = sqrt(72*eps/(mass of carbon)) = 1.173949917160013 

nm/ps 

% Time Step: dT = SF*r0/c = SF*0.326589741517688 ps 

% We used a safety factor of SF = 0.5 

eps = 0.019141089;   

LJ_dT = 0.01*0.326589741517688; 

LJ_r0 = 0.3834; 

LJ_Potential = @(r)(eps*((LJ_r0./r).^12-2*(LJ_r0./r).^6)); % in units 

of (mass of carbon)(nm)^2/(ps)^2 

LJ_Force = @(r)(12*eps/LJ_r0*((LJ_r0./r).^13-(LJ_r0./r).^7)); % in 

units of (mass of carbon)(nm)/(ps)^2 

  

%% Morse Potential  

% Morse parameters: beta = 26.25 nm^(-1) 

%    r0 = 1.42 nm 

%    D_e = 0.603105E-18 J = 30.178381729595756(mass of 

carbon)(nm)^2/(ps)^2 

% Force Constant: k = d^2E/dr^2 = 2*beta^2*D_e  

%                   = 4.158958232109915e+04 (mass of carbon)/(ps)^2 

% Wave speed: c = sqrt(k*A/(N*m)) = sqrt(k*r0^2/(mass of carbon)) 

%               = 2.895880415215109e+02 nm/ps 

% Time Step: dT = SF*r0/c = SF*0.004903517398506 ps 

% We used a safety factor of SF = 0.5 

D_e =  30.178381729595756; 

beta = 26.25; 

Morse_r0 = 1.42; 

Morse_dT = 0.5*0.004903517398506; 

Morse_Potential = @(r)(D_e*(exp(-2*beta*(r-Morse_r0))-2*exp(-

beta*(r-Morse_r0)))); 

Morse_Force = @(r)(2*beta*D_e*(exp(-2*beta*(r-Morse_r0))-exp(-

beta*(r-Morse_r0)))); 

  

%% Potential Used 

Force = Morse_Force; 

Potential = Morse_Potential; 

dT = Morse_dT; 

r0 = Morse_r0; 

  

%% Set up  Rectanglular Lattice 

Nx = 100; % Number of molecules in x 

Ny = 100; % Number of molecules in y 

N = Nx*Ny; % Total number of molecules 

A = N*r0^2; % Area of computational domain 

strainX = 0; % Strain in the x-direction 

widthX = (1.0+strainX)*Nx*r0; % Width in x-direction of 

computational domain 
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widthY = Ny*r0; % % Width in y-direction of computational domain 

rx_start = (1.0+strainX)*r0; % initial interatomic spacing in x-

direction 

  

% Matrices with the initial x,y coordinates of each atom 

[Y_init,X_init] = meshgrid(r0*(0:(Ny-1)),rx_start*(0:(Nx-1))); 

delX = 0.00001*r0*randn(size(X_init));  

delY = 0.00001*r0*randn(size(Y_init)); 

X = X_init + delX; % small random perturbations 

Y = Y_init + delY; % small random perturbations 

  

  

%% Randomly generate the initial velocity direction 

v0 = sqrt(2*kb*Temp_desired); % Root-mean-square velocity in 

nm^2/ps^2 

theta = 2*pi*rand(Nx,Ny); % Uniform Random number in [0,2 pi] 

Vx = v0*cos(theta); 

Vy = v0*sin(theta); 

  

figure(1); 

quiver(X,Y,Vx,Vy,0.5); 

title('Initial Velocities'); 

  

  

  

%% Initial Force Calculation 

% Convention : Positive force is repulsive, negative is attractive. 

Fx = zeros(Nx,Ny); 

Fy = zeros(Nx,Ny); 

plusx = [2:Nx,1]; % index of neighbor in +x-direction 

minusx = [Nx,1:Nx-1]; % index of neighbor in -x-direction 

plusy = [2:Ny,1]; % index of neighbor in +y-direction 

minusy = [Ny,1:Ny-1]; % index of neighbor in -y-direction 

  

% Calculate force with neighbor in +x-direction 

dX = [X(2:Nx,:);X(1,:)+widthX]-X;  

dY = Y(plusx,:)-Y; 

R = sqrt(dX.^2+dY.^2); % distance to neighbor in +x-direction 

F = Force(R); 

Fx = Fx - F.*dX./R + F(minusx,:).*dX(minusx,:)./R(minusx,:); % 

subtract force from right and add force from left 

Fy = Fy - F.*dY./R + F(minusx,:).*dY(minusx,:)./R(minusx,:); % 

subtract force from right and add force from left 

  

% Calculate force with neighbor in +y-direction 

dX = X(:,plusy)-X; 

dY = [Y(:,2:Ny),Y(:,1)+widthY]-Y; 

R = sqrt(dX.^2+dY.^2); % distance to neighbor in +y-direction 

F = Force(R); 

Fx = Fx - F.*dX./R + F(:,minusy).*dX(:,minusy)./R(:,minusy); % 

subtract force from above and add force from below 

Fy = Fy - F.*dY./R + F(:,minusy).*dY(:,minusy)./R(:,minusy); % 

subtract force from above and add force from below 

  

%{ 

figure(2); 

quiver(X,Y,Fx,Fy,0.8), hold on; 

quiver(X,Y,delX,delY,0.5), hold off; 

legend('Force','Displacement'); 

title('Initial States before First Time Step') 

%} 

%% Time Integration using the Velocity Verlet Method 

tic; 

N_steps = 20000; 

p_out = zeros(N_steps,2); % position of center atom 

E_out = zeros(N_steps,1); % potential 

Stress_out = zeros(N_steps,4); % stress 

for t = 1:N_steps 

    % Update X and Y position at new time step using old velocity 

and 

    % acceleration 

    X = X + Vx*dT + 0.5*dT^2*Fx; 

    Y = Y + Vy*dT + 0.5*dT^2*Fy; 

    % Fix the first atom to prevent drift 

    X = X - X(1,1);  

    Y = Y - Y(1,1); 

    p_out(t,1) = X(floor(Nx/2),floor(Ny/2))-

X_init(floor(Nx/2),floor(Ny/2)); 

    p_out(t,2) = Y(floor(Nx/2),floor(Ny/2))-

Y_init(floor(Nx/2),floor(Ny/2)); 

  

    % Calculate Forces at the updated positions 

    Fx_new = zeros(Nx,Ny); 

    Fy_new = zeros(Nx,Ny); 

     

    % Calculate force with neighbor in +x-direction 

    dX = [X(2:Nx,:);X(1,:)+widthX]-X;  

    dY = Y(plusx,:)-Y; 

    R = sqrt(dX.^2+dY.^2); 

    F = Force(R); 

    W = Potential(R); 

    E_out(t) = E_out(t) + sum(sum(W)); 

    Fx_new = Fx_new - F.*dX./R + 

F(minusx,:).*dX(minusx,:)./R(minusx,:); % subtract force from right 

and add force from left 

    Fy_new = Fy_new - F.*dY./R + 

F(minusx,:).*dY(minusx,:)./R(minusx,:); % subtract force from right 

and add force from left 

    Stress_out(t,1) = Stress_out(t,1)+ sum(sum(F.*dX.*dX./R)); % 

sigma_XX 

    Stress_out(t,2) = Stress_out(t,2)+ sum(sum(F.*dX.*dY./R)); % 

sigma_XY 

    Stress_out(t,3) = Stress_out(t,3)+ sum(sum(F.*dY.*dY./R)); % 

sigma_YY 

     

    % Calculate force with neighbor in +y-direction 

    dX = X(:,plusy)-X; 

    dY = [Y(:,2:Ny),Y(:,1)+widthY]-Y; 

    R = sqrt(dX.^2+dY.^2); 

    F = Force(R); 

    W = Potential(R); 

    E_out(t) = E_out(t) + sum(sum(W)); 

    Fx_new = Fx_new - F.*dX./R + 

F(:,minusy).*dX(:,minusy)./R(:,minusy); % subtract force from 

above and add force from below 

    Fy_new = Fy_new - F.*dY./R + 

F(:,minusy).*dY(:,minusy)./R(:,minusy); % subtract force from 

above and add force from below 

    Stress_out(t,1) = Stress_out(t,1)+ sum(sum(F.*dX.*dX./R)); % 

sigma_XX 

    Stress_out(t,2) = Stress_out(t,2)+ sum(sum(F.*dX.*dY./R)); % 

sigma_XY 

    Stress_out(t,3) = Stress_out(t,3)+ sum(sum(F.*dY.*dY./R)); % 

sigma_YY 

     

    % Calculate test velocity (before scaling) 

    Vx = Vx + 0.5*dT*(Fx+Fx_new); 

    Vy = Vy + 0.5*dT*(Fy+Fy_new); 
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    % Calculate current temp 

    KE_average = sum(sum(Vx.^2+Vy.^2))/(2*N); 

    Temp = KE_average/kb; 

     

    %Scale velocity 

    Vx = sqrt(Temp_desired/Temp)*Vx; 

    Vy = sqrt(Temp_desired/Temp)*Vy; 

     

    % Set Forces 

    Fx = Fx_new; 

    Fy = Fy_new; 

end 

  

%% Plot output 

figure(3); 

quiver(X,Y,Vx,Vy), hold on; 

quiver(X,Y,Fx,Fy), hold on; 

quiver(X,Y,Vx*dT + 0.5*dT^2*Fx,Vy*dT + 0.5*dT^2*Fy), hold off; 

legend('Velocity','Force','Displacement'); 

title(['States for Final Time Step (',num2str(Temp_desired),')']); 

  

figure(4); 

quiver(X,Y,X-X_init,Y-Y_init); 

title(['Total Displacement after Final Time Step 

(',num2str(Temp_desired),'K)']), hold on; 

plot([0, widthX, widthX, 0, 0],[0, 0, widthY, widthY, 0]), hold off;  

  

figure(5); 

plot((1:N_steps)*dT,p_out/r0); 

legend('X','Y'); 

ylabel('Displacement (Fraction of Equilibrium Bond Length)'); 

xlabel('Time (ps)'); 

title(['Displacement of Center Atom (',num2str(Temp_desired),'K)']); 

  

figure(6); 

Potential = E_out/N; 

plot((1:N_steps)*dT,Potential,[0,N_steps*dT],[-2*eps,-2*eps]); 

ylim([-2.1*eps, 0+0.1*eps]); 

ylabel('Potential ((mass of carbon)(nm)^2/(ps)^2)'); 

xlabel('Time (ps)'); 

legend('Potential','Minimum Possible Potential'); 

title(['Potential versus Time (',num2str(Temp_desired),'K)']); 

  

figure(7); 

Stress = Stress_out/A; 

plot((1:N_steps)*dT,Stress); 

ylabel('Stress ((mass of carbon)/(ps)^2)'); 

xlabel('Time (ps)'); 

legend('\sigma_{XX}','\sigma_{XY}','\sigma_{YY}'); 

title(['Stress versus Time (',num2str(Temp_desired),'K)' 
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