
E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 55

Secure Environment for Unsafe Component

Loading
E.Kodhai

#1
, Gnanasundari.A

*2
,

Associate Professor, Department of Information and Technology,

*P.G. Student, Department of Computer Science and Engineering,

Sri Manakula Vinayagar Engineering College, Puducherry.
1
kodhaiej@yahoo.co.in

2
gnanasundari15.5@gmail.com

Abstract-Dynamic loading is an important mechanism for

software development. It allows an application the

flexibility to dynamically link a component and use its

exported functionalities. Because of these advantages,

dynamic loading is widely used in designing and

implementing software. A key step in dynamic loading is

component resolution, i.e., locating the correct component

for use at runtime. Although flexible, this common

component resolution strategy has an inherent security

problem. Since only a file name is given, unintended or

even malicious files with the same file name can be

resolved instead. A technique to detect unsafe dynamic

component loadings is proposed. The paper proposes a

secure environment to detect unsafe component loading in

dual systems such as client and server.

Keywords— Dynamic loading, component resolution, component

loading.

I. INTRODUCTION

Dynamic loading is widely used in designing and

implementing software. Its benefits include modularity and

generic interfaces for third-party software such as plug-ins. It

also helps to isolate software bugs as bug fixes of a shared

library can be incorporated easily. Dynamic loading

components are utilization requires local file system access on
the end host. The following problems are occurred in the local

and remote dynamic components loading. In local system, the

file does not exist in the specified path or the specified search

directories, hijacking the components. Although in the remote

system, the browser automatically download arbitrary files to

the user’s Desktop directory without any prompting,

vulnerable program starts up through the shortcut, an archive

file containing a document and a malicious component.

A. Remote Attacks

Buffer overflows have been the most common form of

security vulnerability for the last so many years. Then

came web browsers that are plagued with vulnerabilities,

providing hackers with easy access to computer systems

via browser-based attacks.

One such project was Mashup OS, that proposed new

abstractions to facilitate improved sharing among multiple

principles hosted in the same web page. Mixed concrete and
symbolic execution important technique for finding and

understanding software bugs, including security relevant ones.

However, previous to Loop-Extended Symbolic Execution on

binary programs, symbolic execution techniques were limited

to examining one execution path at a time, in which symbolic

variables reflect only direct data dependencies. A key

limitation of single-path symbolic execution is that it interacts

poorly with loops, a common programming construct. This

approach is applied to the problem of detecting and

diagnosing buffer overflow vulnerabilities, in a tool that

operates on unmodified Windows and Linux binaries. Rather

than trying a large number of inputs in an undirected way, this
approach often discovers an overflow on the first candidate it

tries. Unsafe component resolutions may cause an application

to load unintended components.

1) “Carpet Bomb”-Based Attack: The Carpet Bomb

attack can lead to remote code execution in conjunction with

unsafe DLL loading on Microsoft Windows. In particular,

when the browser accesses a malicious webpage, attackers can

make the browser automatically download arbitrary files to

the user’s desktop directory without any prompting [3]. This

flaw leads to remote code execution if a vulnerable

application checks in the desktop directory first for resolving a
DLL. When Internet Explorer 7 runs, it loads this DLL file

and executes arbitrary code [4].

2) “Shortcut with Component” Attack: Sending a victim

an archive file containing a shortcut to a vulnerable program

and a malicious component can also cause remote code

execution. If the vulnerable program starts up through the

shortcut, it loads the component and executes malicious code.

3) “Document with Component” Attack: Opening a

document can load particular files placed in the same

directory as the document. This vulnerability can be exploited

to launch remote code execution attacks by sending a victim

an archive file containing a document and a malicious

component.

E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 56

B) Serious Security Vulnerabilities

An unsafe component loading can cause serious security

vulnerabilities in software. They can be zombie, virus etc., the

user may not know that the system software is infected but it

can damage the system when the infected code is getting

executed once the user clicks on the file injected by the hacker.

II. RELATED WORK

Brumleyet al. [11] , proposed a tool for automatically

protecting against integer-based vulnerabilities, efficiently

detecting integer-based attacks against C programs at run time.

A compiler extension that compiles C programs to object code

that monitors its own execution to detect integer-based attacks

is analyzed. This compiler is a useful and lightweight software

testing tool. The limitation is it has a run-time defense
mechanism that may generate false positives when

programmers use integer overflow deliberate and it can miss

some integer bugs because it does not model certain C

features.

Safe component resolution [12], present a

mechanism safe-open, to prevent unsafe component

resolutions in Unix by detecting modifications to path names

by untrusted users on the system. A dynamic analysis is

performed to discover unsafe component loading

vulnerabilities in the software. Vulnerability analysis and

detection testing and analysis techniques for detecting

software vulnerabilities have been well explored.
The Saturn tool [14] expresses program properties as

boolean constraints, which models pointers and heap data

down to the bit level. Since dynamic checking runs code, it is

limited to just executed paths, but can more effectively check

deeper properties. Examples include program executions that

loop on bad inputs, or byzantine errors that occur when a

formatting command (such as for printf) is not properly

obeyed. Many of the errors in this paper would be difficult to

discover statically. To overcome this EXE testing is applied

which shows how aggressive symbolic execution can be used
to find such security holes inreal systems code and other

interesting errors [15].

Data Space Randomization [13], in which the most

critical updates from software vendors have been based on

vulnerabilities such as buffer over flows heap overflows,

exploitation of these vulnerabilities with the most promising

defenses being based on randomization. Two randomization

techniques that have been explored are address space

randomization (ASR) that randomizes the location of objects

in virtual memory, and instruction set randomization(ISR) that

randomizes the representation of code. These method explore
a third form of randomization called data space

randomization(DSR) that randomizes the representation of

data stored in program memory.

Valueguard [16] , is a countermeasure for data-only

attacks caused by buffer overflows. Valueguard's detection

technique consists of inserting canary values in front of all

memory objects and verifying them when the objects are used.
These countermeasure operates on the source code level and

does not require any modifications to the target platform

valueguard can be used either as a testing tool by developers

before deployment of an application or as a run-time

protection monitor for critical applications. Using valueguard

a previously unreported buffer overflow in the olden

benchmark suite was found and it showed that valueguard can

detect and stop data-only attacks that many other generic

countermeasures cannot. It overcomes all the attacks that can

be caused by buffer overflow.

Bas Cornelissenet et al.[18], proposed a tool
quantification of the usefulness of trace visualization for

program comprehension. To gain a deeper understanding of

the nature of task its added value, some 8types of tasks is

tested in EXTRAVIS which is a tool for execution of trace

visualization. To fulfill these goals, design and execution of a

controlled experiment in which how the tool affects (1) the

time that is needed for typical comprehension tasks, and (2)

the correctness of the solutions given during those tasks is

measured.

Loop-Extended Symbolic Execution [17] , on Binary

Programs is an important work wherein the goal is to extend

the symbolic expressions computed from a single execution
by incorporating additional information reflecting the effects

of loops that were executed. In single-path symbolic execution,

the values of variables are either concrete or are represented

by a symbolic expression. But some of the values considered

concrete by single-path symbolic execution are in fact

indirectly dependent on the input because of loops. To make

loop-extended symbolic execution more tractable, the task is

split into two parts by introducing a new class of symbolic

variables, which we call trip counts. Each loop in the program

has a trip count variable that represents the number of times

the loop has executed at any moment to keep track of the
paths being executed.

III.BACKGROUND

A) Dynamic Analysis

Dynamic analysis is to detect component loading. There are

three types of information collected. The simplest way to

determine the memory address of a variable we want to inject

is to obtain it at execution time. The information are system

calls are invoked for dynamic loading, image loading, process
and thread identifiers. The collected information is stored in a

profile that is later used for reference.

 System call analysis is a widely used analysis

technique to understand program behavior because a sequence

of invoked system calls can provide useful information on a

program execution. To capture system-level actions for the

dynamic component loading, system calls that cover all

possible control-flow paths of the dynamic loading procedure

are instrumented , which enables the procedure offline to be

reconstructed. Also its parameter information for detecting

unsafe component resolutions is detected. Specifically, the

E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 57

target component specification (i.e., specified fullpath or
filename) and the directory search order can be obtained from

the system call parameters.

Actual loadings of target components through

dynamic binary instrumentation is done. The loading

information is needed for reconstructing the loading procedure

in a combination with the information captured by the system

call instrumentation. It also indicates the resolved full path

determined by the loading procedure. Unsafe component

loading is detected using resolved path by the unsafe checker

as shown in figure 2.

If the target program uses multithreads and each
thread loads a component dynamically, the instrumented

system calls for each loading can be interleaved, which makes

it difficult to correctly reconstruct the loading procedure of

each thread. To solve this problem, process and thread

identifiers along with the other information on instrumented

system is detected.

B) DETECTION OF UNSAFE COMPONENTS

 Unsafe component resolution is classified into unsafe

resolution and resolution failure as sorted out with its

necessary conditions in Table 1.

1) Resolution Failure of a Target Component:
 To detect failed resolution of a target component, the

number of image loads and the number of failed resolutions

during the dynamic loading procedure is detected. In

particular, if no image is loaded and the resolution of the

component failed, the component loading is said to be a

resolution failure.

2) Unsafe Resolution of a Target Component:

To check whether the target component is specified by its

file name is necessary because a full path specification does

not iterate through the search directories for resolution. If a
file name is used, then the resolved path of the target

component by retrieving the first element of a list of image

loads in the dynamic loading procedure is noted.

TABLE I

CONDITI

ONS FOR

COMPON

ENT

LOADING

IV. SYSTEM OVERVIEW

The proposal is an effective dynamic analysis to detect

vulnerable and unsafe dynamic component loadings. The

work introduces an automated technique to detect and analyse

vulnerabilities and errors related to the dynamic component.

The technique is to implement a set of practical tools for
detecting unsafe component loadings.The overall architecture

is shown in figure 3. The exploitability of unsafe component

loadings in terms of local and remote attacks is identified. The

analysis is done in two phases in order to reduce the

performance overhead incurred during dynamic binary

instrumentation. The first phase is online phase and the second

phase is offline phase as shown in figure 1. First, a sequence

of system-level actions are captured for dynamic loading

during a program’s execution then dynamic binary

instrumentation is used to generate the profile on its runtime

execution The detection of vulnerable components is carried

out using algorithm in figure 2 with reference to table 1.

Figure1. Unsafe component detection

Local attacks assume that attackers can access the

local file system on a victim host, while remote attacks

assume that attackers can only send data to the victim user.

Input: S (a sequence of actions for a dynamic loading)

Auxiliary functions:

TargetSpec(S): return target specification of S

DirSearchOrder(S): return directory search order used

inS
ImgLoad(S): return the image loadings in S

ResolutionFailure(S): return the resolution failures in S

ChainedLoading(S): return actions for the chained

loadings in S

TYPE

CONDITION

Resolution
failure found

Target component is not found

Unsafe

resolution

i) Target
component is
specified by its
name

ii) Target
component is
resolved by

iterating through
multiple
directories

iii) There exists

another
searched
directory before
resolution

E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 58

IsUnsafeResolution(filename, resolved_path, search_dirs):
check whether the resolution is unsafe

1: img_loadsImgLoad(S)

2: failed_resolutionsResolutionFailure(S)

3: if jimg_loadsj ¼¼ 0 then

4: if jfailed_resolutionsj ¼¼ 1 then

5: Report this loading as a resolution failure

6: end if

7: else

8: spec TargetSpec(S)

9: dirsDirSearchOrder(S)

10: if spec is the filename specification then
11: resolved_pathimg_loads[0].resolved_path

// retrieve the first load

12: if IsUnsafeResolution(spec,resolved_path,dirs)

then

13: Report this loading as an unsafe resolution

14: end if

15: end if

16: chained_loadsChainedLoading(S)

17: for each_load in chained_loadsdo

18: OfflineProfileAnalysis(each_load)

19: end for

20: end if

Figure 2. Offline Profile Analysis

To accomplish remote attacks exploiting unsafe

component loadings, attackers need to place malicious files in

the DLL-hijacking directories from remote sites. However,

accessing the file system of a remote host is generally

prohibited. For example, the system directory is not accessible

remotely unless the directory is shared to the remote user or

the system is exploited by other vulnerabilities to enable it.

Due to this difficulty in remote exploitation, unsafe
component loadings have not been considered as a serious

security threat.

To find remote attacks on unsafe DLL loadings caused

by the following three conditions: resolution failure, file name

specification and standard or alternate search order the loading

can be focused. Dynamic loading is performed by the dlopen

system call. The first phase of the technique is platform-

dependent, while the second is platform-independent. Unsafe

component loading is essentially a type of programming

defects[5,6]. Therefore, this problem often arises in operating

systems that support dynamic loading.

A) MODULES

 The proposed work is carried out as a set of modules.

They are as follows

1. Erroneous Program

2. Profile construction

3. Unsafe checker

4. Results and forward

1) Erroneous Program:

A Java program created with error and bugs and erroneous
program files. This program is executed by the server. This

vulnerability can be exploited to launch remote code

execution attacks by sending the victim an archive file

containing a document and an erroneous component. The user

is given with the erroneous code and it is passed on to the

server.

The output of each and every phase namely the

construction module, the profile generation are all based on

the result acquired from the erroneous code module. Too

many codes made of erroneous program may spoil the system,

so an effective analysis of the bugs and proper identification
of the tools is required. In order to analyze the unsafe

components first the erroneous code must be given to the

system administrator for the future development. The

functional requirement of this is erroneous code.

2) Profile construction:

The profile from the running program contains system

calls, image loading, thread process and identifiers. The

malicious program is taken and analyzed using the three
conditions. A detailed analysis has been widely used to

understand software behavior and to adopt this approach for

component loading. Dynamically instrument the binary

executable under analysis to capture a sequence of system-

level actions for dynamic loading of components. During the

instrumented program execution, we collect three types of

information such as system calls invoked for dynamic loading,

image loading and process and thread identifiers. The

collected information is stored as a profile for the

instrumented application and is analyzed in the offline profile

analysis phase.

E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 59

Figure3. Architecture Design

System Calls Invoked for Dynamic Loading

System call analysis is a widely used analysis

technique to understand program behavior because a sequence

of invoked system calls can provide useful information on a

program execution.
To capture system-level actions for the dynamic

component loading, we instrument system calls that cover all

possible control-flow paths of the dynamic loading procedure,

which enables us to reconstruct the procedure offline. Besides
the name of an instrumented system call, its parameter

information is also collected for detecting unsafe component

resolutions. Specifically, the target component specification

(i.e., specified fullpath or filename) and the directory search

order can be obtained from the system call parameters.

Although the directory search order can vary according to the

underlying system and program settings, it is computed by

operating systems and provided as parameters to the relevant

system calls for dynamic loading. Furthermore, results of the

instrumented system calls provide both the control flow in the

loading procedure and error messages generated by the
operating systems. Such information is used for the

reconstruction of the dynamic loading procedure and the

detection of unsafe loadings.

 Image Loadings: We also capture actual loadings of target

components through dynamic binary instrumentation. The

loading information is needed for reconstructing the loading

procedure in combination with the information captured by

the system call instrumentation. It also indicates the resolved

full path determined by the loading procedure. We use this

resolved path to detect unsafe component loading.

 Process and Thread Identifiers: Since this approach is based

on the system call instrumentation, it is important to consider
multithreaded applications. If the target program uses

multithreads and each thread loads a component dynamically,

the instrumented system calls for each loading can be

interleaved, which makes it difficult to correctly reconstruct

the loading procedure of each thread. To solve this problem,

we capture process and thread identifiers along with the other

information on instrumented system

3) Unsafe Checker Module:

The unsafe components are analyzed based on Profile

information. All components are loaded from the profile.

Group a sequence of action in the profile by process and

thread identifiers as the actions performed by different threads

may be interleaved due to context switching. Grouping

separates the sequences of loadings performed by different

threads. Divide the sequence for each thread into sub

sequences of actions, one for each distinct dynamic loading.

This can be accomplished by using the first invoked call for

loading as a delimiter. Obtain a list of groups, each of which

contains a sequence of actions for loading a component at
runtime. This gives the possible control flows in the loading

procedure. In this function, unsafe components are collected

from the program. The program components are checked by

the conditions. To detect failed resolution of a target

component, simply check the number of image loads and the

number of failed resolutions during the loading procedure.

In particular, if no image is loaded and the resolution of the

component failed, then report the component loading as a

resolution failure.

Thus, the image loading is equal to zero. This is the

necessary condition for resolution failure because a program
may attempt to load a component that is already loaded. To

avoid reporting any false resolution failures, explicitly check

whether a resolution failure has occurred. Check whether the

target component is specified by its file name because a full

path specification does not iterate through the search

directories for resolution. If a file name is used, then retrieve

the resolved path of the target component by retrieving the

first element of a list of image loads in the dynamic loading

procedure. The first element of the list corresponds to the

target component because, if the target component is already

loaded or its resolution is failed there exists no image loading

in the loading procedure. The target component is always
loaded for the first time during its runtime loading. Based on

the resolved full path, the target component specification, and

the applied directory search order, determines whether to

classify this as an unsafe resolution by checking the

directories searched before the resolution. To detect unsafe

component resolutions in the chained loading procedure by

performing the above mentioned conditions recursively.

4) Result and forward module:

The detected unsafe components results are forwarded to

the user. The user is able to view the result based on which the

unsafe components are identified. Based on which we can

resolve system call at runtime and confirm file existence of

resolution.

V. CONCLUSION

The technique to detect unsafe dynamic component

loadings is described. The technique works in two phases. It

first generates profiles to record a sequence of component

loading behaviors at runtime using dynamic binary

instrumentation. It then analyzes the profiles to detect two
types of unsafe component loadings: resolution failures and

unsafe resolutions. Thus a technique is proposed for the

unsafe components detection and analyzed in dual system that

is the client and server.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their

detailed and constructive review of this work.

E. Kodhai et al. / Journal of Computing Technologies Vol 2, Issue 2 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 60

REFERENCES

[1] Taeho Kwon, Studen and Zhendong Su, “Automatic

Detection of Unsafe Dynamic Component Loadings”,

IEEE transactions on software engineering, 2012

[2] “Windows DLL Exploits Boom; Hackers Post

Attacks for 40-Plus Apps,”

http://www.computerworld.com/s/article/9181918/W

indows_DLL_exploits_boom_hackers_post_attack,

2011
[3] “About the Security Content of Safari 3.1.2 for

Windows,” http:// support.apple.com/kb/HT2092,

2011.

[4] “IE’s Unsafe DLL Loading,”

http://www.milw0rm.com/ exploits/2929, 2011.

[5] Tielei Wang, TaoWei, Zhiqiang Lin, Wei

Zou,”IntScope: Automatically Detecting Integer

Overflow Vulnerability in X86 Binary Using

Symbolic Execution”

[6] Mark Mitchell, Jeffrey Oldham, and Alex Samuel,

“Secure Linux Programming”- Book
[7] “Researcher Told Microsoft of Windows Apps Zero-

Day Bugs 6 Months Ago,”

http://www.computerworld.com/s/article/print/91813

58/Researcher_told_Microsoft_of_Windows_apps_z

ero_ day_bugs_6_months_ago, 2011.

[8] “Zero-Day Windows Bug Problem Worse than First

Thought, Says Expert,”

http://www.computerworld.com/s/article/9180978/Ze

ro_day_Windows_bug_problem_worse_than_first_th

ought_ saysexpert, 2011

[9] “Hacking Toolkit Publishes DLL Hijacking

Exploit,”http://www.computerworld.com/s/article/91
81513/Hacking_toolkit_publishes_DLL_hijacking_e

xploit, 2011.

[10] T. Kwon and Z. Su, “Automatic Detection of Unsafe

Component Loadings”, Software Testing and

Analysis, 2010.

[11] D. Brumley, D.X. Song, T. Chiueh, R. Johnson, and

H. Lin, “RICH: Automatically Protecting against

Integer-Based Vulnerabilities”, Network and

Distributed System Security , Mar. 2007.

[12] S. Chari, S. Halevi and W. Venema, “Where Do

You Want to Go Today? Escalating Privileges by

Pathname Manipulation”, Mar. 2010.

[13] Bhatkar, S., Sekar, R.,” Data space randomization”,
Detectionof Intrusions and Malware & Vulnerability

Assessmentconference , 2008

[14] Y. Xie and A. Aiken, ” Scalable error detection

using booleansatisfiability”, IGPLAN-SIGACT

symposium on Principles of programming languages,

2005.

[15] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill,

and D.R. Engler, “Exe: Automatically Generating

Inputs of Death”, 2006.

[16] Steven Van Acker, Nick Nikiforakis, Pieter
Philippaerts, Yves Younan, and Frank

Piessens,”ValueGuard: Protection of native

applications against data-only buer over ows” ACM

Conference on Computer and Communications

Security

[17] PrateekSaxenaPongsinPoosankam, Stephen

McCamant Dawn Song,”Loop-Extended Symbolic

Execution on Binary Programs”ACM,2009
[18] Bas Cornelissen, Andy Zaidman, Arie van Deursen,”Trace

Visualization for Program Comprehension:A Controlled
Experiment”, Technical Report, Delft University of
Technology, 2009

http://www.computerworld.com/s/article/9181918/
http://www.computerworld.com/s/article/9181918/
http://www.computerworld.com/s/article/9181918/
http://www.milw0rm.com/
http://www.computerworld.com/s/article/
http://www.computerworld.com/s/article/9180978/

