
D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 8


Abstract— With the growing amount of information in various
domains, retrieval and analysis is the most frequently used
operation. Various institutions/organizations generate valuable
information in various domains which is queried and analyzed by
users for various purposes. Most of the applications performing
these tasks are predominantly database driven and tightly
coupled with the system. This limits the possibilities of seamless
database integration with other sources of knowledge and also
their ability to adopt to changes in the information structures. We
describe a generic approach comprising a loosely coupled system
with an ability to perform complex querying, analysis and
seamless integration with other systems, both off line and over
internet.

Index Terms— Web Services, XML, WSDL, BPEL, UDDI,
ESB.

I. INTRODUCTION

The Web Services architecture describes the principles behind
the next generation of e-business architectures, presenting a
logical evolution from object-oriented systems to systems of
services[1]. Web Services systems promote significant
decoupling and dynamic binding of components[2]. All
components in a system are services, in that they encapsulate
behavior and publish a messaging API [3]to other
collaborating components on the network. Services are
marshaled by applications using service discovery for dynamic
binding of collaborations[4]. These new applications,
themselves, become services, thus creating aggregated services
available for discovery and collaboration[5].

Web Services are self-contained, modular applications that can
be described, published, located, and invoked over a network,
generally, the Web[6]. The Web Services architecture is the
logical evolution of object-oriented analysis and design, and
the logical evolution of components geared towards the
architecture[7], design, implementation, and deployment of
e-business solutions[8].

A Web service is a software system designed to support
interoperable[9] machine-to-machine interaction over a
network[10]. It has an interface described in a

machine-processable format (specifically WSDL)[11]. Other
systems interact with the Web service in a manner prescribed by
its description using SOAP[12] messages, typically conveyed
using HTTP[13] with an XML[14] serialization in conjunction
with other Web-related standards[15].
The rest of the paper is organized as follows. Section 2
deals with proposed SOA model, Section 3. gives the
conclusion

II. PROPOSED MODEL

A. Categories of Web services

Web services can be categorized into three categories like:
1. Business information: Information about the
particular business can be shared with consumers or other
businesses.

2. Business integration: For the business promotion, the
business becomes part of a global network of value-added
suppliers that can be used to conduct commerce.

B. Web Services components

For the execution of the web service following activities need
to be taken:
• A Web service needs to be create its interfaces and invocation
methods must be defined.
• A Web service needs to be published to one or more intranet
or Internet repositories for potential users to locate.
• A Web service needs to be located to be invoked by potential
users.
• A Web service needs to be invoked to be of any benefit.
• A Web service may need to be unpublished when it is no
longer available or needed.

Agents and Services: A Web service is an abstract notion that
must be implemented by a concrete agent. The agent is the
concrete piece of software or hardware that sends and receives
messages, while the service is the resource characterized by the
abstract set of functionality that is provided.
1. Requesters and Providers: The provider entity is the person
or organization that provides an appropriate agent to implement
a particular service. A requester entity is a person or
organization that wishes to make use of a provider entity's Web
service.

SOA Model
D. R. Ingle#1, Dr. B.B. Meshram*2

#Department of computer Engineeringt, University of Mumbai
Bharati Vidyapeeth College of Engineerig, Navi Mumbai, India

1dringleus@yahoo.com
*Department of Computer Technology, VJTI

Matunga, Mumbai, India
2bbmeshram@vjti.org.in

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 9

2.Service Description: The Web Service Description (WSD)
is a machine-processable specification of the Web service's
interface, written in WSDL. It defines the message formats,
datatypes, transport protocols, and transport serialization
formats that should be used between the requester agent and
the provider agent.
3.Semantics: The semantics of a Web service is the shared
expectation about the behavior of the service. In effect, this is
the "contract" between the requester entity and the provider
entity regarding the purpose and consequences of the
interaction. The semantics represents a contract governing the
meaning and purpose of that interaction.

Fig 1: Working of Web Service

C. Overview of Engaging a Web Service

1) There are many ways that a requester entity might
engage and use a Web service as shown in fig.

2) 1. The requester and provider entities become known to
each other

3) 2. The requester and provider entities somehow agree on
the service description and

4) semantics that will govern the interaction between both
of them.

5) 3. The service description and semantics are realized by
requester and provider agents.

4. The requester and provider agents exchange messages,
thus performing some task on behalf of the requester and
provider entities.

D. Web services task properties

• Discoverable: It has to be discovered and accessed by
consumers.
• Communicable: often asynchronous messaging as opposed
to synchronous messaging.
• Conversational: A conversation involves sending and
receiving documents in a context.
• Secure and Manageable: Security, manageability,
availability, and fault tolerance are critical for a commercial
web-service.

E. Characteristics of web services:

1. Web services are self-contained. On the client side, without
any additional software
using programming language with XML and HTTP , client
request is enough to get start. While On the server side, a Web
server and servlet engine are required.

2. Web services are self-describing. The client and server need
to recognize only the
format and content of request and response messages.
3. Web services are modular. More complex Web services can
be created using number of simple web services either by
using workflow techniques or by calling lower layer Web
services from a Web service implementation.
4. Web Services are platform independent .Output of the web
services are XML-based standards which are designed to
promote interoperability

F. Advantages of web services

• exposing the function on to network: A Web service is a
unit of managed code that can be remotely invoked using
HTTP. So, Web Services allows exposing the functionality of
existing code over the network..
• Connecting Different Applications: Web Services
allows different applications to talk to each other and share
data and services among themselves. So, Web services are
used to make the application platform and technology
independent.
• Standardized Protocol: Web Services uses standardized
industry standard protocol for the communication. All the
four layers (Service Transport, XML Messaging, Service
Description and Service Discovery layers) use the well
defined protocol in the Web Services protocol stack.
• Low Cost of communication: Web Services uses SOAP
over HTTP protocol for the communication, so can use
existing low cost internet for implementing Web Services.
• Support for Other communication means: Beside
SOAP over HTTP, Web Services can also be implemented
on other reliable transport mechanisms. E.g. Web Services
can also be implemented using ftp protocol (Web services
over FTP).
• Loosely Coupled Applications: Web Services are
self-describing software modules which encapsulates
discrete functionality. Web Services are accessible via
standard Internet communication protocols like XML and
SOAP.
• Web Services Sharing: Web Services supports all the
technologies like Enterprise Architecture Interface,
Business to Business (B2B) thus helping the business to
use existing investments in other technologies.
• Web Services are Self Describing: Web Services are self
describing applications, which reduces the software
development time.
• Automatic Discovery: Web Services automatic discovery
mechanism helps the business to easy find the Service
Providers.
• Business Opportunity: Web Services has opened the door
to new business opportunities by making it easy to connect
with partners.

G. Tools for Web services development

Tools are provided to assist with the following tasks of Web
services development.

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 10

• Discover. Browse the UDDI Business Registries or WSIL
documents to locate existing Web services for integration.
• Create or Transform. Create bottom-up Web services from
existing artifacts. Create top-down Web services from WSDL
discovered from others or created using the WSDL Editor.
• Build. Wrap existing artifacts as SOAP accessible services
and describe them in WSDL.
• Deploy. Deploy Web services into a variety of test
environments.
• Test. Test Web services running locally or remotely in order
to get instant feedback.
• Develop. Generate sample applications to assist you in
creating your own Web service client application.
• Publish. Publish Web services to a UDDI v2 or v3 Business
Registry, advertising your Web services so that other
businesses and clients can access them.

H. Web Service Architecture

Web Services architecture requires three fundamental
operations: publish, find, and bind. Service providers' publish
services to a service broker. Service requesters find required
services using a service broker and bind to them.

Fig 2: Web service basic architecture

Web services provide a standard means of interoperating
between different software applications which are running on
different platforms or on different frameworks. A Web
service is a software system which is designed to support
interoperable machine-to-machine interaction in a network. It
has an interface described using Web Service Description
Language. Other systems interact with the Web service using
SOAP messages, typically conveyed using HTTP with an
XML serialization.

Fig 3 Web Service Architecture

• Universal Description, Discovery, and Integration
(UDDI) allows businesses to register with an Internet
directory that will help them advertise their services.
• Simple Object Access Protocol (SOAP) is standard protocol
for initiating conversations with a UDDI Service.
• Web Service Description Language (WSDL) is the
standard for describing Web services based on XML service
IDL (Interface Definition Language). This defines the service
interface and its implementation characteristics.
• ebXML (e-business XML) defines core components,
business processes, registry and repository, messaging
services, trading partner agreements, and security. ebXML is a
B2B framework, which enables enterprises of any size to
conduct business over the Internet from any geographical
location.
• Service Description: Message exchanges are documented in
a Web service description (WSD).It defines the message
formats, datatypes, transport protocols, and transport
serialization formats that should be used between the requester
agent and the provider.
• Service roles and interactions: A network component in a
Web Services architecture can plays fundamental roles: service
provider, service broker, and service client.
• Service providers create and deploy their Web services and
can publish the availability of their WSDL-described services
through a service registry, such as a Business Registry.
• Service brokers register and categorize published services
and provide search services.
For example, UDDI acts as a service broker for
WSDL-described Web services.
• Service clients use broker services such as the UDDI
Business Registry to discover a needed WSDL-described
service and then bind to and call the service provider.

I. Service life cycle of the web Services

A service life cycle is expressed in the state transition
diagrams below. There are two separate transition paths:
service itself and request processing.

Fig.4. Service life cycle of web services

States
• UP (compound) — (i.e. the service is available).
• DOWN (compound) — (i.e. the service is not available).

Transitions
• Start of Life (SOL) — the service starts its life in UP state.
• End of Life (EOL) — the service ends its life from DOWN state.
• Activate — the service can become available which transitions it from
DOWN to UP
• Passivate — the service can become unavailable which transitions it

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 11

from UP to DOWN

Universal Description, Discovery, and Integration
(UDDI)

Universal Description, Discovery, and Integration
(UDDI) is a standard protocol used for Describing
available Web services components. This allows
businesses to register with an Internet directory that will
help them to advertise their services, so companies can
find one another and conduct transactions over the Web.
UDDI uses registration and lookup task using XML and
HTTP(S)-based mechanisms. UDDI includes an XML
schema for SOAP messages that defines a set of
documents to describe business and services
information.UDDI has two functions:
• It is a SOAP-based protocol that defines how clients
communicate with UDDI registries.
• It is a particular set of global replicated registries.

J. Technical Architecture of UDDI

Content inserted into the UBR is done at a single node, and
that operator node becomes the master owner of that content.
Any subsequent updates or deletes of the data must occur at the
operator node where the data was inserted.

Fig. 5 UDDI initiative

The UBR allows inquiry services, but services may be
published only by authenticated entities. Private operator
nodes can define the access rules for their nodes on a
case-by-case basis. They can follow the same model as the
UBR or make the restrictions looser or tighter.

• UDDI Specifications: The UDDI project defines a set of
XML Schema definitions that describe the data formats used by
the various specification APIs.
• UDDI replication: describes the data replication processes
and interfaces to which a registry operator must conform to
achieve data replication between sites.
• UDDI operators: this outlines the behavior and operational
parameters required by UDDI node operators.
• UDDI Programmer's API: This specification defines a set
of functions that all UDDI registries support for inquiring
about services hosted in a registry and for publishing
information about a business or a service to a registry.
• UDDI registries:. UDDI registries come in two forms:
public and private. A private registry enables to publish and
test internal e-business applications in a secure, private

environment and a public registry is a collection of peer
directories that contain information about businesses and
services.
• UDDI Business Registry:UDDI assigns a unique identifier
to each service description and business registration. These
become the service and business keys respectively. UDDI
servers are a directory of available services and service
providers.

K. Data structure types (UDDI registry)

Registration of a service involves four core data structure
types: business information, service information, binding
information, and information describing the specifications for
services. The relationship between these data types is described
in Figure 1.
• Business information: Information that is contained in a
business Entity structure.

Fig 6 Relationship between data types for UDDI
• Service information: The businessService structure
contains information about families of technical services. It
groups a set of Web services related to either a business
process or group of services.

• Information describing the specifications for services:
Metadata about the various specifications implemented by a
given Web service represented by the tModel.
• Each child structure has a unique parent structure. This
means that each businessService structure is owned by a
specific businessEntity. In turn, each bindingTemplate is
owned by a specific businessService.
• Publisher assertions: this is a way in UDDI to associate
businessEntity structures. The publisher assertion defines a
group of businessEntity structures.
• Service projections: This enables a business entity to
reference a service that was published by another business
entity. By using the businessService structure as a projection
to an already published businessService, businesses can share
or reuse services. Service projections are managed centrally
as part of the referencing business Entity.

L. tModel of the UDDI

The tModel structure, short for "Technology Model", represents
technical fingerprints, interfaces and abstract types of
meta-data. A tModel is a data structure representing a service
type type (a generic representation of a registered service) in
the UDDI registry, it organizes the service type's information
and makes it accessible in the registry database. Corollary with
tModels are binding templates, which are the concrete
implementation of one or more tModels. Inside a binding

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 12

template, one registers the access point for a particular
implementation of a tModel. WSDL files are perfect examples
of a UDDI tModel. Each business registered with UDDI
categorizes all of its Web services according to a defined list of
service types. Businesses can search the registry's listed service
types to find service providers. Each tModel should contain an
overview URL, which references a document that describes
the tModel and its use in more detail.

Fig 7 tModel for the UDDI

M. Data structures used in UDDI

• <businessEntity>: The businessEntity structure contains all
descriptive information about the business and the services it
offers.
• <businessService> : Each businessEntity structure contains
one or more businessService

structure. A businessService structure describes a
categorized set of services offered by a business.

• <bindingTemplate>: The bindingTemplate structure
contains a technical description of a service. Each
bindingTemplate belongs to a single businessService element.

2. SOAP- (Simple Object Access Protocol)

SOAP is a lightweight protocol for the exchange of
information in a decentralized, distributed environment. A
SOAP message is a transmission of information from a ender
to a receiver. SOAP messages can be combined to perform
request/response patterns. SOAP is transport independent and
most commonly carried over HTTP in order to run with the
existing Internet infrastructure. The SOAP standard defines the
rules for how data types can be constructed.

2.1. SOAP structure
SOAP is an XML-based protocol that defines three parts to
every message:
• Envelope.envelope describes what is in a message and how
to process it. The envelope is the top element of the XML
document, providing a container for control information, the
address of a message, and the message itself. Headers
transport any control information such as quality-of-service

attributes. The body contains the message identification and its
parameters. Both the headers and the body are child elements of
the envelope.
• Encoding rules. The set of encoding rules expresses
instances of application-defined
data types. Encoding rules define a serialization mechanism
that can be used to exchange instances of application-defined
data types.
• Communication styles. Communications can follow a
remote procedure call (RPC) or message-oriented (Document)
format.

Fig 8. SOAP structure

2.2.Binding styles of SOAP
SOAP supports two different communication styles:
• Remote procedures call (RPC): Invocation of an operation
returning a result. Typically used with SOAP encoding, this is
not WS-I compliant.
• Document Style: Also known as document-oriented or
message-oriented style. This style provides a lower layer of
abstraction, and requires more programming work.
2.3 Encoding styles of SOAP
In distributed computing environments, encoding styles define
how data values defined in the application can be translated to
and from a particular protocol format. The translation process
is known as serialization and deserialization.
• SOAP encoding: The SOAP encoding style allows to
serialize/deserialize values of data types from the SOAP data
model. This encoding style is defined in the SOAP 1.1
standard, and is not WS-I compliant. WSDL defines the Literal
XML encoding style:
• Literal XML: Literal refers to the fact that the document

should be read as-is, or unencoded. The document is
serialized as XMI, meaning that the message XML complies
with the Schema in the WSDL.

3. Eb-XML (Electronic Business using eXML)

ebXML as it is typically referred to, is a family of XML based
standards sponsored by OASIS and UN/CEFACT whose
mission is to provide an open, XML-based infrastructure that
enables the global use of electronic business information in an
interoperable, secure, and consistent manner. The ebXML
architecture is a unique set of concepts; part theoretical and
part implemented in the existing ebXML standards work.

4. WSDL (Web Service Description Language)

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 13

The WSDL describes services as collections of network
endpoints, or ports. The WSDL
specification provides an XML format for documents for this
purpose. The abstract definitions of ports and messages are
separated from their concrete use or instance, allowing the
reuse of these definitions.

Fig 9 WSDL Structure

• Service/Service The service can be thought of as a
container for a set of system functions that have been
exposed to the Web-based protocols.
• Port/Endpoint: The port/endpoint does nothing more
than define the address or
connection point to a Web service. It is represented by
a simple HTTP URL string.
• Binding/Binding: The binding specifies the interface as
well as defining the SOAP
binding style (RPC/Document) and transport (SOAP
Protocol) and operations.
• PortType/Interface: The <portType> element, renamed to
<interface>, defines a Web
service, the operations that can be performed, and the
messages that are used to perform the operation.
• Operation: Each operation can be compared to a method
or function call in a
traditional programming language.
• Message: The message contains the information needed to
perform the operation. Each message consists of one or
more logical parts. Each part is associated with a
message-typing attribute. The part name attribute provides a
unique name among all the parts of the enclosing message.
Parts are a description of the logical content of a message.
• Types: The purpose of the types in WSDL is to describe
the data. XML Schema is used (inline or referenced) for this
purpose.

4.1 Working of WSDL for service Operation
The steps involved in providing and consuming a service are:
1. A service provider describes its service using WSDL. This
definition is published to a directory of services. The directory
could use Universal Description, Discovery, and Integration
(UDDI). Other forms of directories can also be used.
2. A service consumer issues one or more queries to the directory
to locate a service and determine how to communicate with that

service.
3. Part of the WSDL provided by the service provider is passed to
the service consumer. That is the service consumer what the
requests and responses are for the service provider.
4. The service consumer uses the WSDL to send a request to the
service provider.
5. The service provider provides the expected response to the
service consumer.

4.2 Mapping WSDL to UDDI
Both WSDL and UDDI were designed to clearly delineate
between abstract meta-data and concrete implementations,
and understanding the implications of the division is
essential to understanding WSDL and UDDI. WSDL makes
a clear distinction between messages and ports: Messages,
the required syntax and semantics of a Web Service, are
always abstract, while ports, the network address where the
Web Service can be invoked, are always concrete. A WSDL
can contain solely abstract interface information and not
provide any concrete implementation data.
4.3 Quality of service in composite web service
Composition of the web services means number of the web
services are integrated together to perform certain task.
Instead of being developed from scratch existing services
can be used and composed into other web services in order to
provide a new and more complex service.The building and
execution of this web services can be carried out using:
1) The individual tasks of the composite service are
identified
2) The suitable web services for each task are discovered
3) The optimal composition of these web services is
identified
4) The execution phase executes the assigned web
services.
In four basic workflow patterns were used: sequential,

parallel, conditional and loop. Another kind of construct,
called discriminator or fault tolerant was introduced.
Resulting with the following 5 patterns:

Fig 10 web service executing patterns

1)Sequential: a web service is executed after
the execution of a predecessor one
2)Parallel: two or more web services are
executed simultaneously.
3)Conditional:There's a condition which establishes
what web service will be called.
4)While/loop: The same web service is called
several times.
5) Discriminator: Two or more web services performing the
same functionality are executed at the same time. Only the

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 14

response of the faster one is taken.

5.XML - Extensible Markup Language
XML is a method for putting structured data in a text file.
XML looks a bit like HTML but isn't HTML. Like HTML,
XML makes use of tags (words bracketed by '<' and '>') and
attributes (of the form name="value"), but while HTML
specifies what each tag & attribute means. XML uses the tags
only to delimit pieces of data, and leaves the interpretation of
the data completely to the application that reads it

5.1 Difference between HTML and XML
• HTML designed to display data whereas XML was
designed to transport & store data.
• XML is not a replacement for HTML, rather it
is a complement for HTML
• XML was designed with the focus on what data is whereas
HTML was designed with the focus on how data looks.
5.2 Syntax for XML
• XML documents are based on a tree structure. All the
contents of the document are contained within a single root tag
which can be anything defined by the user.
• Within the root tag there are child elements, which further
can have sub child elements as well as siblings (elements at the
same level).
• XML documents have to follow a strict syntax & formatting,
which will ultimately result ―well formed‖ XML documents.
• All XML tags must have a closing tag. Omitting the closing
tag for a XML element is illegal& it would identify as an error
XML tags are case sensitive.
Therefore, start & end tags must write with the same case

5.3 Algorithm for mapping XML Document Structure to
Database Schema

Figure 2.16 shows possible mappings from an XML document
structure to an Object Oriented or Object Related schema. The
arrows denote possible mappings between the two. As shown
in the arrows numbered 1 through 4, each XML element or
attribute can be mapped to either a database class or a column.
However, if XML attributes are mapped to classes, join
operations are required unnecessarily when processing queries
and, therefore.

Figure11 mapping from XML structure to database schema
A relationship between an element and an attribute can be
mapped to either a relationship between a class and a column

(i.e., arrow 5) or a relationship between a class and another
class (i.e., arrow 7). However, only the latter option applies
because XML attributes are mapped to only the database
columns. The relationship between an element and another
element is mapped to either the relationship between a class
and a column (i.e., arrow 6) or the relationship between two
classes (i.e., arrow 8).

Algorithm for mapping XML to database
Input: D XML document
Output: object O with records E

1. {
2. for (element E in the XML document D)
3. {
4. if (E is mapped to a class)
5. {
6. create an object O in the class to which E is mapped;
7. if (there exists an object Op that stores the parent element
and the relationship R)
8. {
9. if (R is a one-to-one relationship)
10. store the OID of O in the column of Op that is a reference
to O;

11. else if (R is a one-to-many relationship)
12. store the OID of O in the column of Op that is a collection
of references to O;
13. if (R is a bi-directional relationship)
14. store the OID of Op in the column of O that is a reference
to Op;
15. }}
16. else if (E is mapped to a column C)
17. {
18. if (the type of C is simple)
19. store the value of E in the column of the object O to which
E is mapped;
20. else if (the type of C is a simple collection)
21. store the value of E in the column of the object O to which
E is mapped as a collection
22. element; }
23. for (each attribute A that belongs to E)
24. store the value of A in the column of the object O to which
E is mapped;
25. }
5.4 Advantage of XML
• The main use of XML is that it can be used as a way to
structure & describe information. Highly structured nature of
XML makes it possible to apply it for all kinds of information.
• XML is used as a way of transporting & storing data. XML is
intended to use with the internet to deliver information.
• XML is used to transport data through internet, so that data
can be accessed from anywhere.
• XML can be used as a way to interchange data between
systems, which were originally not designed to do so.
• Bridge the gap between different systems which are using
data of incompatible formats XML is also used as a complement
for HTML.
• When displaying dynamic data in HTML documents, the

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 15

data can be stored in separate XML files, so that no need to
change HTML code when data change.
• It is text-based. It supports Unicode, allowing almost any
information in any written human language to be
communicated.
• It represent the most general computer science data
structures: records, lists and trees.
• The strict syntax and parsing requirements make the
necessary parsing algorithms extremely simple, efficient, and
consistent.
• XML is heavily used as a format for document storage and
processing, both online and offline. It is based on international
standards. It can be updated incrementally.
• It allows validation using schema languages such as XSD
and Schematron, which makes effective unit-testing,
firewalls, acceptance testing, contractual specification and
software construction easier.
• The hierarchical structure is suitable for most (but
not all) types of documents.
• It manifests as plain text files, which are less restrictive
than other proprietary document formats.

• Forward and backward compatibility are relatively
easy to maintain despite changes in DTD or Schema

5.5 XML in SOA and Web services
Advantages that XML offers in SOA and Web services include
oa low barrier to entry (it is simple and quite easy to read and
debug)
oflexibility (its self describing nature is more forgiving than
rigid data formats)
orich structure (it easily models hierarchical, variant, and
even graph-oriented data)
oLoose coupling (its textual nature eliminates some of the
problems that arise when
applications exchange binary data such as serialized language
objects).

5.6 Weblogic Integration using XML

Business processes send and receive messages and interact
with their environment through a
controls paradigm. Messages can contain either XML or
non-XML (binary or textual) data. XML Schema types are
used to describe all message contents; in the case of non-XML
message types, WebLogic Integration (tool FormatBuilder)
that allows developers to (virtually) define their data content in
XML terms.

6. SOA (Service Oriented Architecture)
Integration Technologies before SOA was
performed using 2 stages as described below:
• Data integration: The goal of data integration systems is to
build applications by integrating heterogeneous data sources.
Data integration systems have three elements
o Source schema: refers to the data model of data sources
to be integrated.
oMediated (target) schema: schema is the view of the

integrated system from the existing data sources.
Mapping provides mechanisms for transforming queries and

data from the integrated systems to those of data sources.
The drawback of this approach is that it requires a significant
effort to understand the data models and to maintain the
mediated schema in the wake of changes in the data sources.
• Business logic integration: The integration of applications
at the business logic level has been thoroughly studied giving
rise to technologies such as remote procedure calls (RPCs),
object brokers (such as DCOM and CORBA), message
brokers, electronic data interchange (EDI) and also standard
specifications such as RosettaNet.

6.1 Business Perspective of SOA
Out of a business perspective, SOA is said to improve business
agility and to maintain services being directly applicable to the
existing business logic of the business: A service-oriented
architecture provides the flexibility to treat elements of
business processes and the underlying IT infrastructure as
secure, standardized components (Services) that can be
reused and combined to address changing business priorities.

6.2 Technical perspective of SOA
The technical perspective emphasizes the importance of the
actual structure of the architecture, i.e. of what SOA is made of
and how it works:
SOA is an enterprise-wide IT architecture that promotes
loose coupling, reuse, and interoperability between systems.
An application architecture in which all functions or services
are defined using a description language and have callable
interfaces that are called to perform business processes.

Figure 12 components of SOA, only considering service providing
aspect

• Client/server architecture, front-end: SOA is best
described as a client/server architecture. SOAs are usually
built upon two or more tiers. The tier maintaining the
graphical user interface (GUI) and representing the so called
Front-End is called Presentation-tier, while the one presenting
the components with the business logic is called Business
logic-tier.

• Enterprise service bus (ESB): Not only one server acts as
provider, but normally several, where each and every one of
them might be a service that is available to all possible clients

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 16

or requestors.
• Service repository: Together with the middleware action,
such as service interaction, the Business logic-tier also
maintains service repositories or directories that store
metadata, i.e. the metadata of published services. Repository is
similar to a place where construction goods are stored and can
be instantly retrieved for use when needed.
• Service repository: Together with the middleware action,
such as service interaction, the Business logic-tier also
maintains service repositories or directories that store
metadata, i.e. the metadata of published services. Repository is
similar to a place where construction goods are stored and can
be instantly retrieved for use when needed.

• Service: A service is a reusable function which can be used
according to the requirement. Services are exchanged between
requestors and providers over the ESB through interfaces.
Service is an application component deployed on
network-accessible platforms hosted by the service provider.
• Components: A software component is a software element
that conforms to a component model and can be independently
deployed and composed without modification according to a
composition standard. Components, in contrast to objects,
have no actual need of only containing classes or even at all.
Instead components might contain traditional procedures and
even have global (static) variables, or it may be realized in its
entirety using a functional programming approach, or using
assembly language, or any other approach

• Interface: The interfaces are the ―contracts creating
transparency, maintaining all the
information needed (information hiding) to symbolize one
specific service, as well as gathering all component end-points
for system independency:
1. A shared boundary across which information is passed.
2. A hardware or software component that connects two or
more other components for the purpose of passing information
from one to the other.
3. To connect two or more components for the purpose of
passing information from one to the other.

6.3 SOA resume
After having presented some introducing general definitions
of SOA, as well as some detailed information about
different attributes of the architecture, it might seem
difficult to put forward a general definition. SOAs consist of
services that are defined by explicit, implementation
independent interfaces. They are loosely bound and invoked
through communication protocols that stress location
transparency and interoperability.
• Service enablement: Each discrete application needs
to be exposed as a service.
• Service orchestration: Distributed services need to be
configured and orchestrated in a unified and clearly defined
distributed process.
• Deployment: Emphasis should be shifted from test to the
production environment, addressing security, reliability, and
scalability concerns.
• Management: Services must be audited, maintained and

reconfigured. The latter requirements require that
corresponding changes in processes must be made without
rewriting the services or underlying application.
6.4 Service oriented modeling
The process of service-oriented modeling and architecture
consists of three general steps:
 Identification
 Specification and
 Realization of Services

Figure 13 Service-Oriented Modeling And Architecture Method

Service Identification: in this process SOA combination of
top-down, bottom-up, and Middle-out techniques of domain
decomposition, existing asset analysis, and goal-service
modeling are used. Based on the types of the business models
used respective domain decomposition is done.In the top-down
view, use cases provide the specification for business services.
This process is often referred to as domain decomposition, of
the decomposition of the business domain into its functional
areas and subsystems, including its flow or process
decomposition into processes, sub-processes, and high-level
business use cases.In the bottom-up view, existing systems are
analyzed and selected as viable candidates for providing lower
cost solutions to the implementation of underlying service
functionality that supports the business process. In this
re-modularization of the existing is done to achieve the new
technique. The middle-out view, validate and unearth other
services not captured by either top-down or bottom-up service
identification approaches. It ties services to goals and
sub-goals, key performance indicators, and metrics. Service
request schema works as shown in the figure 13.
Service Classification or Categorization
This activity is started when services have been identified.
This is to classify the service into service hierarchy, which
reflects the composite or fractal nature of services. Here
services can and should be composed of finer- grained
components and services. Classification along with
determining composition and layering of the services. It also
coordinates building of interdependent services based on the
hierarchy. Also, it helps to define, design, and deploy fine
grained services with very little governance, which will result
in major performance, scalability, and management issues.
Subsystem Analysis: after the domain decomposition, this
activity takes the subsystems and specifies the
interdependencies and flow between them. The analysis of the
subsystem consists of creating object models to represent the

D.R. Ingle et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 17

internal workings and designs of the containing subsystems that
will expose the services and realize them. The design subsystem
will be realized as an implementation construct of a
large-grained component.
Component Specification: in this details of the component that
implement the services are specified as Data, Rules, Services,
Configurable profile, Variations and Messaging and events
specifications and management definition occur at this step.
• Service Allocation: this process is of assigning services to
the subsystems that have
been identified so far. These subsystems realize their
published functionality to the layers in the SOA. Always this
subsystem has a one-to-one correspondence with the
enterprise components. Structuring of these subsystems is to
construct enterprise components with a combination of
Mediators, Façade, Rule objects, Configurable profiles,
Factories. Allocation of components and services to layers in
the SOA requires the documentation and resolution of key
architectural decisions. This relates to the application
architecture and also to the technical operational architecture
designed and used to support the SOA realization at runtime.
• Service Realization: here the decision is taken to which
legacy system module will be
used to realize a given service and which services will be built
from the ground-up. Other realization decisions like security,
management and monitoring of services. Top-down domain is
conducted in parallel with a bottom-up analysis of existing
legacy assets that are candidates for componentization and
service exposure

III. CONCLUSION

A Web services are refocusing organizations on the concepts
of service-oriented architecture. Although highly reusable,
loosely coupled architectures have been a goal for many
organizations. Web services are fostering interest in and
providing the technology to implement service-oriented
architectures that enable them to realize their vision. SOA has a
lot of emphasis on interface. Starting from the messages which
are the parts of the interface, the contract which is the
collection of the messages, the endpoint where the contract is
delivered and the policy which governs the behavior of the
endpoint. The focus on interfaces is what gives SOA the ability
to create loose coupling, composable components, reuse and
achieve the various design goals. Another nice attribute of this
definition is that we can use as a base for both the technical and
the business perspectives of SOA as the common elements of
both perspective are used in this definition.

REFERENCES

[1]A Dynamic Data Integration Model Based on SOA Jun Wang 2009 ISECS
International Colloquium on Computing, Communication, Control, and
Management

[2]Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Commun. 7,
39–59 (1994)

[3]Lingjuan Li,Wenyu Tang. Research of the Applications of CBR in
Business. Journal of Nanjing University of Posts and
Telecommunications,No.10,2006 pp:17-21

[4]Loh, Y., Yau, W., Wong, C., Ho, W.: Design and Implementation of an
XML Firewall. Computational Intelligence and Security 2, 1147–1150
(2006)

[5]Yee, G., Shin, H., Rao, G.S.V.R.K.: An Adaptive Intrusion Detection and
Prevention (ID/IP) Framework for Web Services. In: International
Conference on Convergence Information Technology, pp. 528–534.
IEEE Computer Society, Washington (2007)

[6]Research on Intelligent Learning Strategy for Knowledge-enabled
Customer Relationship Management Based on SOA and CBR.

[7]Yan Qin, Zhang Guoliang, Wang Keyi Knowledge-enabled Human
Resource Development Based on e-HR. Computer Applications and
Software, No.11,2008

[8]BPEL 2.0 specification - OASIS. (2007). [Online]. Available:
http://docs.oasis-open.org/wsbpel/

[9]I. Matsumura, T. Ishida, Y. Murakami, and Y. Fujishiro. Situated web
service: Context-aware approach to high speed web service
communication. In IEEE International Conference on Web Services
(ICWS-06), pages 673–680, 2006.

[10] Utilizing WS-BPEL business processes through ebXML BPSS. Bahareh
heravi

[11] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Y aron Goland,
Satish Thatte, "Business Process Execution Language for Web Services
Version 1.1", 5 May 2003

[12] An Optimized Design of Service Orchestration Haoping Bai', Meina
Song', Huiyang Xu', Qian Wang', Lingyun Fu' Choreographing Web
Services Adam Barker, Christopher D. Walton, and David Robertson

[13] The OASIS Committee, Web Services Business Process Execution
Language (WS-BPEL) Version 2.0. 2007. Choreography Design Using
WS-BPEL Oliver Kopp Frank Leymann

[14] How BPEL and SOA Are Changing Web Services Development James
Pasley Cape Clear Software Tier Caching for SOA Performance by Kiran
Dattani, Milind Pandit, and Markus Zirn

[15] Enterprise Architecture and Web Services Dinarle Ortega, Elluz
Uzcátegui, María M. Guevara

[16] Service oriented architectures: approaches, technologies and research
issues Mike P. Papazoglou · Willem-Jan van den Heuvel

[17] Research of Business Transaction Process in SOA Environment Ling
Yun，Lin Guangyan

[18] Service-Oriented Architecture and Business Process Choreography in an
Order Management Scenario: Rationale, Concepts, Lessons Learned
Olaf Zimmermann, Vadim Doubrovski

Mr. D.R. Ingle (ISTE LM’2004) is Professor of
Computer Engineering Department at Bharati
Vidyapeeth College of Engineering, Navi Mumbai,
Maharashtra state; India received bachelor degree, and
Master degree in computer engineering. He has
participated in more than 10 refresher courses to meet
the needs of current technology. He has contributed
more than 25 research papers at national, International
Journals. He is life member of Indian Society of
Technical Education. His area of interest is in
Databases, intelligent Systems, and Web Engineering.

Dr. B.B.Meshram (CSI LM’95, IE ’95) is Professor and head
of Computer Technology department at VJTI, Matunga,
Mumbai, Mahar ashtra state, India. He received
bachelor degree, Master degree and doctoral degree in
computer engineering. He has participated in more than 30
refresher courses to meet the needs of current technology. He
has chair more than 15 AICTE STTP Programs and
conferences. He has received the appreciation for lecture at
Manches ter and Cardip University, UK. He has contributed

more than 250 research papers at national, International Journals. He is life member of
computer society of India and Institute of Engineers. His current research interests are in
Databases, data warehousing, data mining, intelligent Systems, Web Engineering and
Network security.

Author’s formal
photoAuthor’s formal
photo

