
Amit et al. / Journal of Computing Technologies Vol 2, Issue 5 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 1

Comparative Analysis of Joins and Semi Joins
in Distributed Query Optimization

Amit Verma#, Rajinder Singh*

Department of Computer Science & Engineering, Guru Nanak Dev University

Amritsar
1amitmtech4031@gmail.com

2tovirk@yahoo.com

Abstract— In this paper the focus is given on computing
and analyzing the performance of joins and semi joins
in distributed database system. Database is defined as
collection of files or table, where as DBMS stands for
Database Management System which is collection of
unified programs used to manage overall activities of
the database. The two dominant approaches used for
storing and managing database are centralized database
management system and distributed database
management system in which data is placed at central
location and distributed over several locations
respectively. Independent of the database approach
used, one of the foremost issue in the database is the
retrieval of data by using multiple table from central
repository in centralized database and from number of
sites in distributed database. Joins and semi joins are
primitive operations used to extract required
information from one, two or multiple tables. The
various metrics that will be considered while analyzing
performance of join and semi join in distributed
database system are Query Cost, Memory used, CPU
Cost, Input Output Cost, Sort Operations, Data
Transmission, Total Time and Response Time. In short
the intention of this study is analyze the performance
and behavior of join and semi-join approach in
distributed database system.

I. INTRODUCTION
A distributed database system is the combination of
two different technologies used for data processing:
Database Systems and Computer Networks. In a
distributed database environment, data is stored at
different sites connected through a network. A
distributed database management system (DDBMS)
supports the creation and maintenance of distributed
databases. An objective of a DDBMS is to present a
simple and unified interface to the users so that they
can access the databases as if there were a single
database. In this way, there is no need for a user to be
familiar with the underlying local database
management systems. Distributed systems are a
collection of independent cooperating systems, which
enables storage of data at geographically dispersed
locations, based on the frequency of access by users

local to a site. The distributed database also enables
combining of data from these dispersed sites by
means of queries .[1]

A. Query processing
Query processing in a distributed database requires
transfer of data from one computer to another
through a communication network. Query at a given
site might require data from remote sites. In query
optimization, a cost is associated with each query
execution plan. Cost is the sum of local cost (I/O
cost, CPU cost at each site) and the cost of
transferring data between sites. The complexity and
cost increases with the increasing number of relations
in the query. Further, minimizing the amount of data
transmission is important to reduce the query
processing cost. Due to the large number of
parameters affecting query execution cost, a single
query can be executed in several different ways. A
query execution strategy or plan is required to
minimize the cost of query processing. The key
problem for query optimization in a distributed
database is selection of the most cost effective plan to
execute a query.[1]

The performance of a distributed database query
depends on how fast and efficiently data is retrieved
from multiple sites. Faster retrieval of data in a
distributed database system is a complex problem
since multiple sites are involved. Several factors
impact the performance of distributed query
processing. several factors impact the performance of
distributed query processing. This factors are
selection of appropriate site (when same data is
replicated at multiple sites), order of operation (like
select, project and join) and selection of join method
(like semi join, natural join, equi join etc.). Due to the
large number of factors involved, there could be
multiple execution plans for a single query. Each plan
is associated with a cost and the objective of a
distributed query optimizer is to find a plan with
lowest possible cost (optimal plan). The execution
cost is expressed as a sum of I/O, CPU and
communication cost.[2]

Amit et al. / Journal of Computing Technologies Vol 2, Issue 5 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 2

B. Query optimization
Query optimization involves two main tasks, search
space generation and finding an optimal plan from
the search space, using search strategies and cost
model. The search space is a set of alternative
execution plans for the input query. A given query is
represented as query trees (Join trees) in a search
space using transformation rules. If a given query
involves many operators and many relations, then the
search space will become very large, because it will
contain a large number of equivalent query trees for
the given query. Investigating a large search space
may increase optimization time and cost. Hence,
query optimization imposes some restriction on the
size of the search space. To reduce the size of the
search space, a restriction is imposed on the shape of
a query tree. Several classes of join trees like linear
and bushy trees exist. The problem of finding an
optimal join tree from set of alternatives (search
space) is solved by using several search strategies.
The search strategy is used to explore the search
space in order to find an optimal plan from set of
alternatives using a cost model.[2]

Query optimization could be static or dynamic. In a
static optimization strategy, a given query is parsed,
validated, optimized once and stored in the database.
Dynamic optimization strategy works in bottom-up
way by building more complex plans from the
simpler plans.[11]

C. Join
Join is one of the most imperative operations in
database theory that is used to extract information
from two or more than two tables. Technically join
operation is one of the special cases of Cartesian
product. In join unlike Cartesian product before
concatenation the tuples of the join tables are
checked against specified condition. There are
various types of joins like equi-join, self join, inner
join, outer join etc. Independent of type all of these
are used to extract data from two or more tables.[4]

A natural join is an equijoin of two relations over a
specified attribute, more specifically, over attributes
with the same domain. A natural join is denoted by
R.

D. Semi-joins
A semi-join is one of the important operations in
relation theory that is used to optimize a joins query.
Semi-join is used to reduce the size of relation that is
used as an operand. A semi-join from Ri to Rj on
attribute A can be denoted as Rj⋉ Ri . Research
shows that semi joins are very helpful in optimizing
the join query by reducing the quantity of data

exchanged. But one of the darken side of using semi
join is that it increases the local processing cost as
well as number of message. It returns rows that
match an EXISTS sub-query without duplicating
rows from the left side of the predicate when several
rows on the right side satisfy the norms of the sub-
query.[4]

II. Analysis Of Distributed Cost Model
Distributed database system, provides data
distribution transparency by hiding the data
distribution details from the users. [5] Whenever a
distributed query is generated at any site of a
distributed system, it follows a sequence of phases
namely query decomposition, query fragmentation,
global query optimization and local query
optimization.
The allocation of data considers a set of fragments , a
set of locations in a network , and a set of
applications placed at L. These applications need to
access the fragments which should be allocated in the
locations of a network. The allocation problem
consists on finding an optimal distribution of F over
L [8]. Thus, distributed cost model includes cost
functions to predict the cost of operators, database
statistics, base data, and formulas to calculate the
sizes of intermediate results.

A. Cost Functions
In a distributed system, the cost of processing a query
is expressed in terms of the total cost measure or the
response time measures .The total cost measure is the
sum of all cost components. If no relation is
fragmented in the distributed system and the given
query includes selection and projection operations,
then the total cost measure involves the local
processing cost only. However, when join and
semijoin operations are executed, communication
costs between different sites may be incurred in
addition to the local processing cost. Local
processing costs are usually evaluated in terms of the
number of disk accesses and CPU processing time,
while communication costs are expressed in terms of
the total amount of data transmitted. [4] For
geographically dispersed computer networks,
communication cost is normally the dominant
consideration, but local processing cost is of greater
significance for local networks. But in wide area
networks the local processing cost is mostly ignored
and an emphasis is made on minimizing the
communication cost.

III. OBJECTIVE OF THE STUDY
 To understand the significance of the Query

Processing in the Distributef Database
Management System.

Amit et al. / Journal of Computing Technologies Vol 2, Issue 5 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 3

 To Design an Algorithm which is used to
analyze the Query in the
DistributedDatabase Management System.

 To compute and analyze different metrics of
Query in Distributed Database Management
System.

Distributed query processing is to translate a high-
level query on a single logical distributed database
(as seen by the users) into a low-level language on
physically distributed local databases. In distributed
query processing, the total cost should be minimized
for executing a distributed query. [5] The query
execution involves only a local processing cost when
no relation is fragmented in a distributed DBMS. On
the other hand, if relations are fragmented, a
communication cost is incurred in addition with the
local processing cost. The aim of distributed query
processing is to minimize the total execution cost of
the query which includes the total processing cost
(sum of all local processing costs in participating
sites) of the query and the communication cost. The
local processing cost of a distributed query is
evaluated in terms of the number of disk accesses
(I/O cost) and CPU cost. The CPU cost is incurred
when performing data operations in the main memory
in participating sites. The I/O cost can be minimized
by using efficient buffer management technique. In a
distributed query execution, the communication cost
is required to exchange data between participating
sites. Hence, the communication cost depends on
several factors such as the amount of data transfer
between participating sites, the selection of best site
for query execution, the number of message transfer
between participating sites, and the communication
network. In case of high-speed wide area networks
(with a bandwidth few kilobytes per second), the
communication cost is the dominant factor and the
optimization of CPU cost and I/O cost can be ignored
in such cases. The optimization of local processing
cost is of greater significance in case of local area
networks.

IV. CONCLUSION
In this paper we discussed about the factors on which
the processing of the query depends. The
comparative analysis of the Query Processing using
joins and semi joins in Distributed Database
Management System is discussed. The use of joins
and semi joins affects the cost of Query Processing in
Distributed DBMS very much and it the cost can be
reduced using joins and semi joins in different
conditions.

V. AKNOWLEDGEMENT
Author is highly indebted to Dr. Rajinder Singh Virk,
Associate Professor, DCSE, Guru Nanak Dev
University, Amritsar for his precious guidance from
time to time.

VI. BIBLIOGRAPHY
[1] “Principles of Distributed Database Systems”
second edition by M. TAMER OZSU.

[2] “Database Concepts” seventh edition by
Navathe.

[3] “Study of Query of Distributed Database Based
on Relation Semi Join” paper proposed by
Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu Yao in
2010 International Conference On Computer Design
And Appliations IEEE in July2010.

[4] “Analysis of Joins and Semi Joins in a Distributed
Database Query ” by Dr. Rajinder Singh Virk ,
Manik Sharma, Dr. Gurdev Singh in July2012
International Journal of Computer Applications (0975
– 8887) Volume 49– No.16.

[5] “Distributed Database System Query
Optimization Algorithm Research” by Fan Yuanyuan
and MiXifeng in 2010 IEEE.

[6] “Combining Join and Semi-Join Operations for
Distributed Query Processing ” by Ming-Syan Chen
and Philip S. Yu in June 2007 IEEE.

[7] “Review of Dynamic Query Optimization
Strategies in Distributed Database” by Pankti Doshi
and Vijay Raisinghani.

[8] “Using Join Operations As Reducers In
Distributed Query Processing” by Ming-Syan Chen
and Philip S. Yu.

[9] “Why Not Semi-joins for Streams, When
Distributed? ” by Tri Tran , Byung Suk Lee ,
Matthew W. Bovee.

[10] “Review of Dynamic Query Optimization
Strategies in Distributed Database” by Pankti Doshi
Vijay Raisinghani.

[11] “Distributed Database System Query
Optimization Algorithm Research” by Fan
Yuanyuan and MiXifeng.

[12] “A Method for Processing Distributed Database
Queries” by WILLIAM PERRIZO.

Amit et al. / Journal of Computing Technologies Vol 2, Issue 5 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 4

[13] “Optimal Query Processing for Distributed
Database Systems” by WESLEY W. CHU,
FELLOW, IEEE, AND PAUL HURLEY.

