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Abstract— In this paper, an algorithm for construction of 

multiple sets of two dimensional (2D) or matrix unipolar (optical) 

orthogonal codes has been proposed. Representation of these 2D 

codes in difference of positions representation (DoPR) has also 

been discussed along-with conventional weighted positions 

representation (WPR) of the code. This paper also proposes the 

less complex methods for calculation of auto-correlation as well as 

cross-correlation constraints within the set of matrix codes. 

Multiple sets of matrix codes provide flexibility for the selection of 

optical orthogonal codes’ set in wavelength-hopping 

time-spreading (WHTS) optical code division multiple access 

(CDMA) system.  

 

Index Terms— Auto-correlation constraint, Cross-correlation 

constraint, Matrix unipolar (optical) orthogonal codes. 

I. INTRODUCTION 

HE two dimensional unipolar orthogonal codes play an 

important role in terms of the better performance 

(cardinality and spectral efficiency) than the one dimensional 

unipolar orthogonal codes [3]. When one dimensional unipolar 

orthogonal codes [1,2] are used in Optical CDMA system, the 

dimension can be temporal, spectral or spatial. The optical 

pulses are placed temporally, spectrally or spatially based on 

the position of bit ‘1’s in the code sequence. When the two 

dimensional orthogonal codes are used, any two dimensions 

can be considered simultaneously e.g., temporal – spectral 

(wavelength), temporal – spatial, or spatial – spectral. Two 

dimensional unipolar orthogonal codes are also called matrix 

orthogonal codes. The matrix codes with one of the dimensions 

as time. In this paper, we are focusing only on these. The 

optical pulses are placed at the position of bit ‘1’s of the 
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orthogonal code in the two dimensional plane. The two 

dimensional or matrix orthogonal codes can be defined with the 

help of  an array  L N  of pulses, representing bit ‘1’ by the 

presence of a pulse and ‘0’ by absence of it. The codes in a set 

are characterized by the constant weight w, the maximum 

autocorrelation constraint a  and the maximum 

cross-correlation constraint c . It may be noted that 

auto-correlation and cross-correlation are meaningful only 

along time axis as the code word synchronization problem 

happens only along time axis. Let the matrix codes X and Y 

belong to the same code set   , , ,a cC L N w    and follow 

the autocorrelation and cross correlation properties [4]. Here 

the codes with 1 ( , ) 1,a c w     are also called pseudo 

orthogonal codes.  

  For a c    , the Johnson’s bound A deriving 

maximum code set size  , ,Z L N w   is given [5] by 
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 Here,  is the Maximum Collision Parameter (MCP). It 

gives the number of maximum collisions of bit ‘1’ elements in 

the array between any two code words. 

Many schemes have been proposed for the generation of 2-D 

OOCs [5 – 13]. These schemes are capable of giving one or 

more than one set of matrix orthogonal codes with the size of 

each set less than the Johnson bound. In this paper, a simple 

algorithm has been proposed to search the multiple sets of 2D 

OOC while achieving the upper bound in this process. We have 

used the already generated 1D OOC [1] for improving the 

efficiency.   

II. REPRESENTATION OF MATRIX ORTHOGONAL CODES 

A matrix orthogonal codes is a matrix  L N of binary 

elements (0,1) with weight w, i.e. total number of bit 1’s in the 

matrix are w. Since, each column in a 2-D code represent a time 

slot, column-wise circular shifting of a 2-D unipolar code is 

considered to be still the same code. The matrix codes can be 
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represented by the position of weighted bits. Each bit position is 

indicated by a’b,  where ‘a’ is column number and ‘b’ is row 

number of weighted bit.  Here, 1 , 0 1.a L b N      

Example I:  For L=4, N=5, weight w = 4, suppose the code is 

 

1 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

 
 
 
 
 
 

.  

 Its weighted position representation (WPR) will be (1’0, 3’0, 

4’1,2’2,). We scan the bits by one column at a time, from top to 

bottom. The columns are chosen from left to right. There are N 

representations for same matrix orthogonal code in weighted 

positions representation (WPR). One for every column-wise 

circular shifted version. These are as follows: 

WPR (1’0, 3’0, 4’1, 2’2), WPR (4’0, 2’1, 1’4, 3’4),       

WPR (2’0, 1’3, 3’3, 4’4), WPR (1’2, 3’2, 4’3, 2’4), and 

WPR (1’1, 3’1, 4’2, 2’3). 

In a matrix orthogonal code, the difference of positions (DoP) 

of consecutive weighted columns remain same on every 

column-wise circular shifted version of the code. Also the 

matrix code can be represented with difference of positions 

representation (DoPR). 

In DoPR of matrix orthogonal code, the position of weighted bit 

is represented by (a’d), where ‘a’ is row number of weighted bit 

and ‘d’ is consecutive difference of column position of next 

weighted bit with position of column of the current weighted 

bit, here1 , 0 1.a L d N      We assume scanning of 

the bits by one column at a time, from top to bottom. The 

columns are chosen from left to right. It provides an unique 

representation of code irrespective of amount of circular 

shifting along the row.             

Example II: Let the matrix orthogonal code X with L=4, N=5, 

and weight w= 7, be                

 Code X = 
1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

 .              

X (WPR) = (1’0, 3’0, 2’1, 4’1, 1’4, 3’4, 4’4);       

X(DoPR) = (1’0, 3’1, 2’0, 4’3, 1’0, 3’0, 4’1).     

 There are N=5 columns. Five possible WPR of this code are 

given along with the DoPR for each version.  

 
 

1 0 0 0 1

WPR 1’0,  3’0,  2’1,  4’1,  1’4,  3’4,  4’4 ,0 1 0 0 0
, ;

DoPR 1’0,  3’1,  2’0,  4’3,  1’0,  3’0,  4’11 0 0 0 1

0 1 0 0 1

 
   
   
   
 
 

 

 
 

0 0 0 1 1

WPR 2’0,  4’0,  1’3,  3’3,  4’3,  1’4,  3’4 ,1 0 0 0 0
, ;

DoPR 2’0,  4’3,  1’0,  3’0,  4’1,  1’0,  3’10 0 0 1 1

1 0 0 1 0

 
   
   
   
 
 

  

 
 

0 0 1 1 0

WPR 1’2,  3’2,  4’2,  1’3,  3’3,  2’4,  4’4 ,0 0 0 0 1
, ;

DoPR 1’0,  3’0,  4’1,  1’0,  3’1,  2’0,  4’30 0 1 1 0

0 0 1 0 1

 
   
   
   
 
 

 

 
 

0 1 1 0 0

WPR 1’1,  3’1,  4’1,  1’2,  3’2,  2’3,  4’3 ,0 0 0 1 0
, ;

DoPR 1’0,  3’0,  4’1,  1’0,  3’1,  2’0,  4’30 1 1 0 0

0 1 0 1 0

 
   
   
   
 
 

 
 

1 1 0 0 0

WPR 1’0,  3’0,  4’0,  1’1,  3’1,  2’2,  4’2 ,0 0 1 0 0
, .

DoPR 1’0,  3’0,  4’1,  1’0,  3’1,  2’0,  4’31 1 0 0 0

1 0 1 0 0

 
   
   
   
 
 

 

One can observe that in this example for every column wise 

circular shifting of the code, WPR of code changes but DoPR 

remain same. Only circular shifting of DoPR (1’0, 3’0, 4’1, 1’0, 

3’1, 2’0, 4’3) without changing the numerical values happens. 

Thus DOPR can be used as a unique representation of two 

dimensional unipolar (optical) orthogonal codes.  

Lemma 1: In DoPR of matrix orthogonal code 

 1 1 2 2' , ' ,..., ' ,w wa d a d a d  
1 2 ... ,wd d d N     

where N is number of columns in the binary matrix orthogonal 

code.                                   

   The DoPR of matrix orthogonal code 

 1 1 2 2' , ' ,..., 'w wa d a d a d may be converted to WPR 

 1 1 2 2' , ' ,..., 'w wa b a b a b  and vice versa with 0
th

 column 

containing at least one bit ‘1’ necessarily, as follows using 

modulo N addition. 

  

1

2 1 1

3 2 2

1 1

0;

;

;

.w w w

b

b b d

b b d

b b d 



 

 

  

 

 

III. CALCULATION OF CORRELATION CONSTRAINTS OF 

MATRIX ORTHOGONAL CODES 

The auto-correlation constraint of a matrix orthogonal code 

is the maximum number of overlapping bit 1’s of matrix code 

with one of its non-zero column-wise circular shifted versions 

[4],[5]. 

Let us take the matrix codes X and Y from same set with code 

parameter  , , ,a cL N w   . The auto-correlation constraint 

is defined as maximum value of the following for all valid value 

of  . 

 
1

, ,

1 0

, 0 1
L N

i j i j

i j

x x for N 




 

    

The cross-correlation constraint for a pair of matrix orthogonal 

codes is the maximum number of overlapping bit 1’s between 

two different matrix codes or their column-wise circular shifted 

versions [4,5]. 

The cross-correlation constraint for the pair of codes X and Y 

can be defined as maximum value of the following, for all valid 

values of . 
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1

, ,

1 0

, 0 1.
L N

i j i j

i j

x y for N 




 

    

The auto-correlation constraint a for a set of matrix 

orthogonal codes is the maximum of auto-correlation 

constraints for all the codes in the set. Thus for each code X,  

( ) ( ), (0 1)a PX X p N       

Here  X  represent the WPR of matrix code X and  PX

represent the WPR of p times column wise right circular shifted 

version of code X. The A B represents the number of entries 

which are common in set A and B. 

Example III: Suppose matrix code X, with its WPR (X) be  

X= 
1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

, (X) = WPR(1’0, 3’0, 2’1, 4’1, 1’4, 3’4, 4’4).      

(X1) = WPR (1’0, 3’0, 4’0, 1’1, 3’1, 2’2, 4’2).   

(X2) = WPR (1’1, 3’1, 4’1, 1’2, 3’2, 2’3, 4’3).  

(X3) = WPR (1’2, 3’2, 4’2, 1’3, 3’3, 2’4, 4’4). 

(X4) = WPR(2’0, 4’0, 1’3, 3’3, 4’3, 1’4, 3’4).         

1( ) ( ) 2X X  , 

2( ) ( ) 1X X  , 

3( ) ( ) 1X X  , 

4( ) ( ) 2X X  . 

Hence the auto-correlation constraint for the code X is 2a  . 

Similarly the cross-correlation constraint for a pair of matrix 

orthogonal code is the maximum number of overlapping bit 1’s 

of a matrix code with the any of ‘N’ cyclic shifted 

representations in WPR of the other matrix code.  

( ) ( ), (0 1).

,

( ) ( ), (0 1).

c P

c P

X Y p p N

Also

Y X p p N





     

     

 

Here  X  represent to WPR of matrix code X and  PY

represent to WPR of p times column wise circular shifted 

version of code Y. 

Example IV: Suppose matrix codes X and Y, with their WPR 

(X) and (Y) respectively be as follows.  

X= 
1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

, (X) =WPR(1’0, 3’0, 2’1, 4’1, 1’4, 3’4, 4’4). 

For this code 2a  .   

Y=
1 0 0 0 1

1 0 1 0 0

0 0 1 0 0

0 1 0 0 1

 
 
 
 
 
 

,(Y) = WPR (1’0, 2’0, 4’1, 2’2, 3’2, 1’4, 4’4). 

For this code, one can verify that 2a  . 

Y1 = WPR (1’0, 4’0, 1’1, 2’1, 4’2, 2’3, 3’3).  

Y2 = WPR (1’1, 4’1, 1’2, 2’2, 4’3, 2’4, 3’4).  

Y3 = WPR (2’0, 3’0, 1’2, 4’2, 1’3, 2’3, 4’4).  

Y4 = WPR (4’0, 2’1, 3’1, 1’3, 4’3, 1’4, 2’4).     

( ) ( ) 4,X Y   

1( ) ( ) 2,X Y   

2( ) ( ) 2,X Y   

( ) (3 ) 2,P PX X    

( ) (4 ) 2.P PX X    

Hence the cross-correlation constraint for the pair of codes X 

and Y, will be 4c  . 

IV. FORMATION OF TWO DIMENSIONAL UNIPOLAR (OPTICAL) 

ORTHOGONAL CODES’ SETS  

Step 1: One dimensional unipolar (optical) orthogonal codes of 

length n = LN, weight ‘w’ with the maximum auto-correlation 

and cross-correlation constraint to be equal to ‘w-1’ are 

identified using the procedure given in [1],[2]. Suppose DoPR

1 2( , ,..., )wa a a is a one dimensional code with code length n = 

LN and code weight ‘w’ with 1 2( ... )wa a a LN    and   

1 2 1( , ,..., )w wa a a a  . The set of one dimensional codes 

with maximum auto-correlation and cross-correlation 

constraint to be less than or equal to ‘w-1’, can be obtained by 

varying 1 2 1( , ,..., )wa a a  in the range 1 to wa  such that 

1 2 1( ... )w wa LN a a a      .  

Step 2: The conversion of one dimensional codes into the 

corresponding two dimensional (matrix) codes is done as 

follows.  

(i) The one dimensional codes (in DoPR) is converted to 

corresponding WPR  representations with first position 

weighted compulsorily [1,2]. The WPR representation of the 

code has positions of bit 1’s is ranging from 1 to (LN). 

(ii) The (WPR) form of 1-D code is converted into two 

dimensional code WPR form by dividing each weighted 

position by ‘L’ to get quotient ‘b’ and remainder ‘a’. If 

remainder is zero, and quotient is non-zero integer, then ‘a’ 

becomes equal to ‘L’ and ‘b’ becomes equal to quotient minus 

one. Here each a’b represent to a weighted position in matrix 

orthogonal code. Here ‘a’ stands for row position (1 to L) and 
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‘b’ stands for column position (0 to N-1).  

The matrix orthogonal code with a’b weighted positions can 

be converted into corresponding binary matrix orthogonal 

code. This binary matrix orthogonal code can be used to 

generate ‘L’ binary matrix orthogonal codes by row wise 

circular shifting of the code L times. These ‘L’ binary matrix 

orthogonal codes in WPR are [(a’b), ((a+1)’b),…,((a+i)’b)]. 

( , )a b , where (a+i)’ is 

'
( ) mod ( )

( )
( ) .

a i L for a i L
a i

L for a i L

      
 

 

 

(iii) Conversion of two dimensional code (WPR) as obtained in 

(ii) into two dimensional code (DoPR) by getting difference ‘d’ 

of two columns of consecutive bit 1’s in circular order so that 

each weighted position is represented by (a’d) as in example III. 

It will be standard DoPR of two dimensional codes if it is 

obtained from one dimensional code represented in standard 

DoPR. 

The two dimensional unipolar (optical) orthogonal code (in 

DoPR) can be converted into binary matrix orthogonal code by 

converting it to two dimensional unipolar (optical) orthogonal 

code (in WPR).  

 

Step 3: For every matrix orthogonal code formed after step 2, 

auto-correlation constraint of the every code can be calculated 

as in example III. Only the codes with desired auto-correlation 

constraint are selected.  

Step 4: Using maximal clique [20] search methods [15-19] 

among the selected codes, set of 2D orthogonal codes are  

formed with desired cross-correlation  and auto-correlation 

constraints. 

 In all the proposed schemes [6-14], the two-dimensional or 

matrix codes and their sets are very specific for matrix 

dimension  L N ,weight ‘w’ and correlation constraints (λa 

and λc). While in the proposed algorithm we can generate the 

sets of matrix pseudo orthogonal codes with maximum code 

size. These code set are designed for general values of  matrix 

dimension  L N , weight ‘w’ and correlation constraints (λa 

and λc).   

V. RESULTS AND CONCLUSION 

The proposed algorithm is a general algorithm to generate all 

possible uni-polar two-dimensional or matrix pseudo 

orthogonal codes for a given matrix dimensions ( )L N and 

weight ‘w’. This algorithm also gives the multiple sets of these 

matrix codes with maximum size given by Johnson bounds. 

Using the proposed method, we have designed the sets of 

matrix orthogonal codes with number of row L=4, number of 

column N=3, weight of the code w=3 auto-correlation 

constraint and cross-correlation constraint less than equal to 2. 

The details of design process are given as an example in the 

Appendix.  This algorithm can be extended to design three 

dimensional as well as multi dimensional pseudo orthogonal 

codes as well as their multiple sets. 
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Input L =4, N=3, weight w=3, ( , ) 2a c    

1. One dimensional DoP code {1 1 10}. Corresponding one 

dimensional in WPR {1,2,3} and binary code ( 1 1 1 0 0 0 0 

0 0 0 0 0). Corresponding Two dimensional WPR code       

[1’0 2’0 3’0], Two dimensional DoP code [1’0 2’0 3’0],  

Two-dimensional binary code 

1 0 0

1 0 0

1 0 0

0 0 0

 
 
 
 
 
 

. 

 

2.  One dimensional DoP code {1 2 9}. Corresponding one 

dimensional code in WPR {1,2,4} and binary code ( 1 1 0 1 

0 0 0 0 0 0 0 0). Corresponding two-dimensional WPR code 

[1’0 2’0 4’0], Two dimensional DoP code [1’0 2’0 4’0], 

Two dimensional binary code 

1 0 0

1 0 0

0 0 0

1 0 0

 
 
 
 
 
 

. 

 

3.  One dimensional DoP code {1 3 8}. Corresponding one 

dimensional code in WPR {1,2,5} and binary code ( 1 1 0 0 

1 0 0 0 0 0 0 0). Corresponding two dimensional WPR code 

[1’0 2’0 1’1], Two dimensional DoP code [1’0 2’1 1’2], 

Two dimensional binary code 

1 1 0

1 0 0

0 0 0

0 0 0

 
 
 
 
 
 

. 

4. One dimensional DoP code {1 4 7}. Corresponding one 

dimensional code in WPR {1,2,6} and binary code ( 1 1 0 0 

0 1 0 0 0 0 0 0). Corresponding two dimensional WPR code 

[1’0 2’0 2’1], Two dimensional DoP code [1’0 2’1 2’2], 

Two dimensional binary code 

1 0 0

1 1 0

0 0 0

0 0 0

 
 
 
 
 
 

. 

5.  One dimensional DoP code {1 5 6}. Corresponding one 

dimensional code in WPR {1,2,7} and binary code ( 1 1 0 0 

0 0 1 0 0 0 0 0). Corresponding  two dimensional WPR code 

[1’0 2’0 3’1], Two dimensional DoP code [1’0 2’1 3’2], 

Two dimensional binary code 

1 0 0

1 0 0

0 1 0

0 0 0

 
 
 
 
 
 

. 

6.  One dimensional DoP code {2 1 9}. Corresponding one 

dimensional code in WPR {1,3,4} and binary code ( 1 0 1 1 

0 0 0 0 0 0 0 0). Corresponding two dimensional WPR code 

[1’0 3’0 4’0], Two dimensional DoP code [1’0 3’0 4’0],   

Two dimensional binary code 

1 0 0

0 0 0

1 0 0

1 0 0

 
 
 
 
 
 

. 

. 

. 

. 

18.  One dimensional DoP code {4 4 4}. Corresponding one 

dimensional code in WPR {1,5,9} and binary code ( 1 0 0 0 1 

0 0 0 1 0 0 0 ). Corresponding Two dimensional WPR code 

[1’0 1’1 1’2], Two dimensional DoP code [1’1 1’1 1’1],      

Two dimensional binary code 

1 1 1

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

. 

19.  One dimensional DoP code {5 1 6}. Corresponding one 

dimensional code in WPR {1,6,7} and  binary code ( 1 0 0 0 0 1 

1 0 0 0 0 0 ). Corresponding two dimensional WPR code         

[1’0 2’1 3’1],   Two dimensional DoP code [1’1 2’0 3’2],    Two 

dimensional binary code 

1 0 0

0 1 0

0 1 0

0 0 0

 
 
 
 
 
 

. 
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