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Abstract - Supply chain management is concerned with the 

coordination of material and information flows in multi-stage 

production systems. Inventory management has long been 

treated as an isolated function solely focused on individual 

entities, taking into account concerned with single vendor-single 

buyer and single-vendor multiple buyer models. Integrated 

single-vendor single-buyer inventory model with multiple 

deliveries has proved to result in less inventory cost. However, 

many researchers assumed that the production run is perfect and 

there is no production delay. In reality, production delay is 

prevalent due to random machine unavailability and shortages. 

This study considers lost sales, and two kinds of machine 

unavailability distributions – uniformly and exponentially 

distributed. A classical optimization technique is used to device 

an optimal solution and a numerical example is provided to 

illustrate the theory. In this model we consider the fuzzy total 

cost under crisp order quantity or fuzzy order quantity in order 

to extend the traditional inventory model to the fuzzy 

environment. We use Function Principle as arithmetic operators 

of fuzzy total cost and use the Graded Mean Integration 

Representation Method to defuzzify the fuzzy total cost. Then we 

use the Kuhn-Tucker Method to find the optimal order quantity 

of the fuzzy order inventory model. The results show that 

delivery frequency has significant effect on the optimal total cost 

and a higher lost sales cost will result in a higher delivery 

frequency. 

 

I. INTRODUCTION 

Due to unreliable production system, vendors may not 

deliver products to the buyers when needed, resulting in lost 

sales. However excessive supplies to fulfill customer’s 

requirement results in higher inventory cost. The inventory 

cost is one of the dominant costs for many industries. 

Industries should plan their strategy to provide products and 

services to the customers at a minimum cost. The order 

quantity and the time to order are critical decisions for both 

the manufacturing and the service industries. Some industries 

implement Just In Time (JIT) System to reduce their inventory 

cost. In order to support an efficient JIT system, it is important 

to ensure the reliability of the vendor’s production system. 

But in reality, there are possibilities that the production 

process is delayed due to machine unavailability and shortages 

of materials and facilities. Abboud et al. (2000) developed 

EPQ models by considering random machine unavailability 

with backorders and lost sales. the models were extended by 

Jaber and Abboud (2001) who assumed learning and 

forgetting in production. later Chung et al (2011) by 

considering deteriorating items In this study, we assume a JIT 

system where the buyer who pays the transportation cost, 

decides the order quantity size of items and requests items 

delivery in multiple shipments. The vendor products the items 

using an Economic Production Quantity (EPQ) model. 

Ideally, the machine starts a production run when the 

inventory level is equal to zero. In some periods, there is a 

possibility that the machine may not be available. If this 

situation occurs, the vendor cannot deliver the predetermined 

quantity ordered by the buyer, resulting in the buyer’s lost 

sales. We consider two distribution models for the random 

machine unavailability case. The distribution models represent 

two different types of distribution. Uniformly distributed 

means constant number of machine unavailability over a 

period of time while exponentially distributed means machine 

unavailability may increase with time. Both cases can occur in 

real life. Similar distribution types were used by Abboud et al. 

(2000) and Giri and Dohi (2005). 

In section 2, the methodology is introduced. In section 3, 

discuss with fuzzy EOQ inventory models with different 

situation. A numerical example is shown in section 4 and 

section 5 concludes. 

 

II. METHODOLOGY 

2.1. Graded Mean Integration Representation Method 

Chen and Hsieh introduced Graded mean Integration 

Representation Method based on the integral value of graded 

mean h-level of generalized fuzzy number for defuzzifying 

generalized fuzzy number. Here, we fist define generalized 

fuzzy number as follows : 

Suppose A  is a generalized fuzzy number as shown in 

Fig.1. It is described as any fuzzy subset of the real line R, 

whose membership function 
A

μ  satisfies the following 

conditions. 

1.  
A

μ x  is a continuous mapping from R to [0, 1], 

2.  
A

μ x  = 0, - < x ≤ a1,  

3.  
A

μ x  = L(x) is strictly increasing on [a1, a2], 

4.  
A

μ x  = WA, a2 ≤ x ≤ a3,  
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5.  
A

μ x  = R(x) is strictly decreasing on [a3, a4], 

6.  
A

μ x  = 0, a4 ≤ x < , 

where 0 < WA ≤ 1 and a1, a2, a3 and a4 are real numbers. 

This type of generalized fuzzy numbers are denoted as     

A  = (a1, a2, a3, a4 ; A)LR when A = 1, it can be formed as   

A  = (a1, a2, a3, a4 ; A)LR. Second, by Graded Mean 

Integration Representation Method, L
-1

 and R
-1

 are the inverse 

functions of L and R respectively and the graded mean h-level 

value of generalized fuzzy number A  = (a1, a2, a3, a4 ; A)LR 

is given by  -1 -1h
L (h) + R (h) .

2
(see fig.2). Then the graded 

Mean Integration Representation of P( A ) with grade wA, 

where  

P( A ) = 

 
A

A

ω

-1 -1

0

ω

0

h
L (h) + R (h)  dh

2

h dh




 

 . . . (1) 

where 0 < h  wA and 0 < wA  1. 

Throughout this paper, we only use popular trapezoidal 

fuzzy number as the type of all fuzzy parameters in our 

proposed fuzzy production inventory models. Let B  be a 

trapezoidal fuzzy number and be denoted as B = (b1, b2, b3, 

b4). Then we can get the Graded Mean Integration 

Representation of B by the formula (1) as  

P(B)  = 

   
1

1 4 2 1 4 3

0

1

0

h
b +b h b - b b b  dh

2

h dh

    



  

1 2 3 4b 2b 2b b
 = 

6

  
   . . . (2) 

  
 

Fig.1. The graded mean h-level value of generalized fuzzy number       

A  = (a1, a2, a3, a4 : wA)LR. 

 

2.2. The Fuzzy Arithmetical Operations under Function Principle 

Function Principle is introduced by Chen (1985) to treat the 

fuzzy arithmetical operations by trapezoidal fuzzy numbers. 

We will use this principle as the operation of addition, 

multiplication, subtraction and division of trapezoidal fuzzy 

numbers, because (1) the Function Principle is easier to 

calculate than the Extension Principle, 92) the Function 

Principle will not change the shape of trapezoidal fuzzy 

number after the multiplication of two trapezoidal fuzzy 

numbers, but the multiplication of two trapezoidal fuzzy 

numbers will become drum-like shape fuzzy number by using 

the Extension Principle (3) if we have to multiply more than 

four trapezoidal fuzzy numbers then the Extension Principle 

cannot solve the operation, but the function principle can 

easily find the result by pointwise computation. Here we 

describe some fuzzy arithmetical operations under the 

Function Principle as follows. 

Suppose A  = (a1, a2, a3, a4) and B  = (b1, b2, b3, b4) are two 

trapezoidal fuzzy numbers. Then  

(1) The addition of A and B  is  

 B
~

    A
~
 = (a1 + b1, a2 + b2, a3 + b3, a4 + b4) 

 where a1, a2, a3, a4, b1, b2, b3 and b4 are any real 

numbers. 

(2) The multiplication of A
~

and B  is B = (C1, C2, C3, C4) 

 where T  = {a1b1, a2b2, a3b3, a4b4} 

         T1 = {a2b2, a2b3, a3b2, a3b3} 

 C1 = min T1, C2 = min T1, C3 = max T1, C4 = max T1 

 If a1, a2, a3, a4, b1, b2, b3 and b4 are all zero positive real 

numbers then  

 A    B  = (a1b1, a2b2, a3b3, a4b4) 

(3)  B  = (-b4, -b3, -b2, -b1) then the subtraction of A and 

B  is  

 A B  = {a1 - b4, a2 - b3, a3 - b2, a4 - b1} where a1, a2, 

a3, a4, b1, b2, b3 and b4 are any real numbers. 

(4) 
1

B
= 

-1B  
4 3 2 1

1 1 1 1
,   ,   ,   

b b b b

 
 
 

 where b1, b2, b3, b4 

are all positive real numbers. If a1, a2, a3, a4, b1, b2, b3 

and b4 are all nonzero positive real numbers then the 

division A and B  is  

 A B
~

 = 31 2 4

4 3 2 1

aa a a
,   ,   ,   

b b b b

 
 
 

 

(5) Let   R, then  

 (i)  ≥ 0,   A  = (a1, a2, a3, a4) 

 (ii)  ≥ 0,   A  = (a4, a3, a2, a1) 

 

2.3. The Kuhn-Tucker Conditions 

Taha (1997) discussed how to solve the optimum solution 

of nonlinear programming problem subject to inequality 

constraints by using the Kuhn–Tucker conditions. The 

development of the Kuhn–Tucker conditions is based on the 

Lagrangean method. 

Suppose that the problem is given by  

Minimize y = f(x) 

Subject to gi(x)  0, i = 1, 2, . . . , m. 

The nonnegativity constraints x   0, if any, are included in 

the m constraints. 

F(x)                  R(x) 

   1 
 

 

 

 
WA 

 

 

   H 

 

 
    0 

A  

a1

  

L-1(h)   a2         -1 -1h
L (h) + R (h) .

2
  a2

   

R-1(h) a4      

X 
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The inequality constraints may be converted into equations 

by using nonnegative surplus variables. Let 2

iS be the surplus 

quantity added to the i
th

 constraint gi(x)  0.  

Let   = (1, 2, . . . , m), g(x) = (g1(x), g2(x), . . . gm(x)) . . . 

and S2 =  2 2 2

1 2 mS ,  S ,  . . . , S .   

The Kuhn–Tucker conditions need x and  to be a 

stationary point of the minimization problem, which can be 

summarized as follows : 

i i

i

λ  0,

f(x) - λ g(x)  = 0,

λ g (x) = 0,  i = 1, 2, . . . , m.

g (x)  0,   i = 1, 2, . . . , m.



 


 

 

 

III. THE EOQ INVENTORY MODEL WITH DISCRETE 

DELIVER ORDER, RANDOM MACHINE 

UNAVAILABILITY TIME AND LOST SALES 

In this section, we develop a sequential optimization 

method using Kuhn-Tucker method. We use this method to 

find the Optimal Economic Order Quantity (EOQ) of the 

fuzzy inventory model. 

 

3.1. Model Formation  

Assume that the unavailability time t is a random variable 

uniformly distributed over the interval [0, 6]. The probability 

density function f(t) is given as  

 f(t)  =  

1
,    0  t  b

b

0,     Otherwise


 





 

The vendor and buyer total cost when the production down 

time is bigger than the upper bound of the machine 

unavailability time is  

TUCNL = TVUCNL + TBUCNL 

TUCNL = 
 2

vv
h q K K(1 - (D/p)+1 DA D

qK 2DqK

 
 

 
2

tC KDAD hq KD

qK qK 2DqK
  

 TUCNL = 
 vv t

h q K(1 - (D/p) + 1A D C DAD hq

qK 2 qK q 2

  
  

 

      

. . . (1) 

Taking the derivative of (1) with respect to q and set the 

value equal to zero we have  

 

 
v t*

NL

v

2 A C K+A D
q   =  

K h K(1 - (D/p) + 1 h



  

 
Throughout this, we use the following variables in order to 

simplify the treatment of the fuzzy inventory models 

v t vA ,  C , A, D, h , P, h       are fuzzy parameters. 

This fuzzy total cost of the system is  

 

 

 

TUCNL  

= 

1

1 1

1
v

4v 1 t 11 1 1

D
h q K(1 -  + 1

pA D C DA D h q
,

qK 2 qK q 2

     
    
       

  




 

2

2 2

2
v

3v 2 t 22 2 2

D
h q K(1 -  + 1

pA D C DA D h q
,

qK 2 qK q 2

    
   
     

  

 
3

3 3

3
v

2v 3 t 33 3 3

D
h q K(1 -  + 1

pA D C DA D h q
,

qK 2 qK q 2

    
   
     

  

 
4

4 4

4
v

1v 4 t 44 4 4

D
h q K(1 -  + 1

pA D C DA D h q

qK 2 qK q 2

    
   
      

   




 

which implies 

TUC NL

 

 = ((Av D) ⊘ (q K)) + ((hv q)/2) (K  

(1 – (D ⊘ P))  1)) ((A D) ⊘ (q K) 

⊕ ((Ct  D) ⊘ q) + (h q)/2) 

where ⊕, ⊖, ⊗ and  are the fuzzy arithmetical operators 

under function principle.  

Suppose 

vA   =  (Av
1
, Av

2
, Av

3
, Av

4
) 

D   =  (D1, D2, D3, D4) 

vh   =  (hv
1
, hv

2
, hv

3
, hv

4
) 

P   =  (P1, P2, P3, P4) 

tC   =  (Ct
1
, Ct

2
, Ct

3
, Ct

4
) 

h   =  (h1, h2, h3, h4) 

A   =  (A1, A2, A3, A4) 

are non negative trapezoidal fuzzy numbers. Then we solve 

the optimal order quantity as the following steps. Second, we 

defuzzify the fuzzy total inventory cost, using the Graded 

Mean Integration Representation Method.  

The result is  

P[TUC NL]

  =

  

1

1 1

1
v

4v 1 t 11 1 1

D
h q K(1 -  + 1

PA D C DA D h q1

6 qK 2 qK q 2

     
    
       

  




 

2

2 2

2
v

3v 2 t 22 2 2

D
h q K(1 -  + 1

PA D C DA D h q

qK 2 qK q 2

    
   
     

   
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3

3 3

3
v

2v 3 t 33 3 3

D
h q K(1 -  + 1

PA D C DA D h q

qK 2 qK q 2

    
   
     

   

 
4

4 4

4
v

1v 4 t 44 4 4

D
h q K(1 -  + 1

PA D C DA D h q

qK 2 qK q 2

    
   
      

    




 

Third we can get the optimal order quantity 
*

NLq ,

 

when 

P[TUC NL]

 

is minimization. In order to find the minimization of 

P[TUC NL]

 

the derivative of P[TUC NL]

 

with q
*
 is  

NLP TUC

q

 
 





 

 

=  0. 

Hence we find the optimal order quantity  

*q

  

= 

 
 

 

1 2 3 4

1 2 3 4

1 2

3 4

v 1 v 2 v 3 v 4

1 1 2 2 3 3 4 4

t 1 t 2 t 3 t 4

1 2
v v

4 3

3 4
v v

2 1

A D 2A D 2A D A D

A D 2A D 2A D A D

C KD 2C KD 2C KD C KD 2

D D
K h K 1 1 2h K 1 1

P P

D D
2h K 1 1 h K 1 1

P P

   


   

   


      
          
           

      
           

        

 1 2 3 4h 2h 2h h





    

 

 

3.2. Fuzzy Inventory EOQ Model with Fuzzy Order Quantity 

In this section, we introduce the fuzzy inventory EOQ 

models by changing the crisp order quantity q  be a 

trapezoidal fuzzy number q  = (q1, q2, q3, q4) with 0  q1  q2 

 q3  q4. Then we get the fuzzy total cost function as  

TUC NL

  
=

1

1 1

1
v 1

4v 1 t 11 1 1 1

4 4 4

D
h q K(1- +1

PA D C DA D h q
,

q K 2 q K q 2

         
       

   
 
  
 

2

2 2

2
v 2

3v 2 t 22 2 2 2

3 3 3

D
2h q K(1- +1

P2A D 2C D2A D h q
,

q K 2 q K q 2

     
    
      

   
 
 
 
 

 

3

3 3

3
v 3

2v 3 t 33 3 3 3

2 2 2

D
2h q K(1- +1

P2A D 2C D2A D h q
,

q K 2 q K q 2

     
    
      

   
 
 
 
 

4

4 4

4
v 4

1v 4 t 44 4 4 4

1 1 1

D
h q K(1- +1

PA D C DA D h q

q K 2 q K q 2

          
       

   
 
  

 

 

Secondly we defuzzify the fuzzy total cost function using 

the Graded Mean Integration Representation Method with           

0 < q1  q2  q3  q4.  

It will not change the meaning of formula (4.3) if we 

replace inequality conditions with 0  q1  q2  q3  q4 into the 

following inequality constraints q2 – q1  0, q3 – q2  0,               

q4 – q3  0, q1 > 0.  

Thirdly the Kuhn-Tucker condition is used to find the 

solutions of q1, q2, q3, q4 to minimize P[TUC NL], subject to             

q2 – q1  0, q3 – q2  0,  q4 – q3  0 and q1 > 0. The Kuhn-

Tucker conditions are i  0, 

f(P[TUC NL]) - (qi) = 0 

 igi(qi) = 0 

    gi(qi) = 0 

These conditions simplify to the following 1, 2, 3, 4  = 0 

& f(P (TUCNL(qi)) - g(qi) = 0 

 

1

1 1

1
v 1

4v 1 t 11 1 1 1

4 4 4

D
h q K(1 -  + 1

PA D C DA D h q1

6 q K 2 q K q 2

         
       

   
 
  
   

2

2 2

2
v 2

3v 2 t 22 2 2 2

3 3 3

D
h q K(1 -  + 1

PA D C DA D h q
2

q K 2 q K q 2

     
    
      

    
 
 
 
 

3

3 3

3
v 3

2v 3 t 33 3 3 3

2 2 2

D
h q K(1 -  + 1

PA D C DA D h q
2

q K 2 q K q 2

     
    
      

    
 
 
 
 

4

4 4

4
v 4

1v 4 t 44 4 4 4

1 1 1

D
h q K(1 -  + 1

PA D C DA D h q

q K 2 q K q 2

          
       

    
 
  

 

 

  - 1(q2 – q1) - 2(q3 – q2) - 3(q4 – q3) - 4q1 = 0 
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which implies 

1

4

4

1
v

4 v 41 4 4

t 42

1

D
h K(1- +1

P A Dh A D1 1
C D

6 2 2 K Kq

   
   

     
     

  
 
 

  

4 1λ λ  = 0   

2

3

3

2
v

3 v 3 3 32

t 32

2

D
h K(1- +1

P A D A Dh2 1
C D

6 2 2 K Kq

   
   

      
      

  
 
 

  

1 2λ λ  = 0 

 

3

2

2

3
v

2 v 23 2 2

t 22

3

D
h K(1- +1

P A Dh A D2 1
C D

6 2 2 K Kq

   
   

     
     

  
 
 

  

2 3λ λ  = 0 

 

4

1

1

4
v

1 v 14 1 1

t 12

4

D
h K(1- +1

P A Dh A D1 1
C D

6 2 2 K Kq

   
   

     
     

  
 
 

  

3λ  = 0  

1(q2 – q1) = 0 

2(q3 – q2) = 0 

3(q4 – q3) = 0 

         4q1 = 0  

Because q1 > 0 and 4 q1 = 0 then 4 = 0. If 1 = 2 = 3 = 0 

then q4 < q3 <  q2 <  q1, it does not satisfy the constraints 0 < q1 

 q2  q3  q4. Therefore q2 = q1,  q3 = q2 & q4 = q3.  

(ie) q1 = q2 = q3 = q4 = q
*
. 

Hence from we find the optimal order quantity 
*

NLq as 

*

NLq = 

 
 

 

1 2 3 4

1 2 3 4

1

2 3

4

v 1 v 2 v 3 v 4

1 1 2 2 3 3 4 4

t 1 t 2 t 3 t 4

1
v

4

32
v v

3 2

4
v

1

A D 2A D 2A D A D

       A D 2A D 2A D A D

   C KD 2C KD 2C KD C KD 2

D
K h K 1 1

P

DD
   2h K 1 1 2h K 1 1

P P

D
  h K 1

P

   


   

   


   
     
     

      
           

        

   1 2 3 41 h 2h 2h h
   
      
     

 

 
IV. NUMERICAL EXAMPLES 

In this section, a numerical example is shown to illustrate 

the model. Let the  

Production rate, P = 19,200 units/year,  

Demand Rate, D = 4,800 units/year, 

Vendor setup cost, Av = $600/cycle, 

Ordering cost of buyer, A = $25/order, 

Vendor holding cost, hv =$6/unit/year, 

Buyer holding cost, h = $7/unit/year, 

Buyer’s transportation cost, Ct =  $50/delivery, 

Number of delivery, K = 6 

The optimal solution is q = 192.354 

TUCNL = 7694.15 

Suppose Fuzzy production rate P is “more or less than 

19200”  

P  = (18800, 19000, 19400, 19600) 

Fuzzy annual demand rate D is “more or less than 4800”  

D  = (4200, 4500, 5100, 5400) 

Fuzzy setup cost Av for vendor per cycle is “more or less 

than 600”  

vA  = (400, 500, 700, 800) 

Fuzzy ordering cost of buyer per order A is “more or less 

than 25”  

A  = (15, 20, 30, 35) 

Fuzzy holding cost hv for vendor per unit per year is “more 

or less than 6”  

vh  = (4, 5, 7, 8) 

Fuzzy holding cost h for buyer per unit per year is “more or 

less than 7”  

h  = (3, 5, 9, 11) 

Fuzzy transportation cost Ct for buyer per delivery is “more 

or less than 50”  

tC  = (30, 40, 60, 70) 

If the number of delivery k is 6, then fuzzy order quantity  
*

NLq = (179.49, 185.75, 199.14, 206.04) 

The optimal total cost when the production down time is 

bigger than the upper bound of the machine unavailability 

time is  
*

NLTUC = (4641.012821, 6136.485317, 9305.045038, 

10942.08398) 

 

V. CONCLUSION 

In this paper, the machine unavailability time is assumed to 

be uniformly distributed. The numerical example illustrates 

how the multiple deliveries result in a lower cost than the 

single delivery model. The stochastic machine time model 

results in a higher cost and more delivery frequencies when 

compared to a perfect machine model. The proposed model 

helps enterprises to optimize their profit by coordinating the 

number of deliveries for various machine unavailability time 

and lost sales cost. For each fuzzy model, a method of 

defuzzification namely the Graded Mean Integration 

Representation is employed to find the estimate of total cost 

function in the fuzzy sense and then the corresponding 

optimal order lotsize is derived from Kuhn-Tucker Model. 
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