
 1 

Mrs. Nagamani T
1
, Mr. Balamurugan V

2,
 Mr.Senthil Kumar. V

3 

1,2
 Assistant Professor, Department of Computer Science and Engineering, Bannari Amman Institute of 

Technology, Satyamangalam.  
3
Assistant Professor (Senior Grade) Bannari Amman Institute of Technology, Satyamangalam.  

1sennaga2005@gmail.com 
2balamuruganvsrit@gmail.com 

3civilvsk@gmail.com 
 

Abstract—Grid computing is a high performance distributed 

computing environment to solve larger scale computational 

demands. It contains resource management, job scheduling, 

security problems, and information management and so on. Job 

scheduling is a fundamental issue in achieving high performance 

in grid computing systems. 

The objective of this project is to schedule independent, 

equal-sized tasks on a tree-based grid computing platform, where 

resources have different speeds of computation and 

communication. Instead of minimizing the total execution time, 

which has been proven to be Non-deterministic Polynomial time 

hard (NP-hard), we improve existing integral linear planning 

model. In this model, the time complexity to obtain optimal 

number of tasks assignment to each computing node of multi-level 

tree is high. To address this problem, Push-Pull method is 

proposed, which transforms the linear planning of multi-level tree 

into single-level tree and therefore the time complexity is greatly 

reduced. Based on the optimal tasks assignment to each node, a 

static distributed heuristic task scheduling algorithm is employed 

for establishing efficient mapping between tasks and available 

resources. The performance analysis of the resulting system 

reveals that the system is highly robust and efficient execution of 

the tasks is possible. The proposed approach employs a static 

distributed task scheduling algorithm for establishing efficient 

mapping between tasks and available resources. This scheduling 

strategy groups the user jobs according to a particular grid 

resource’s processing capability and sends the grouped jobs to the 

resource. Job grouping in tree based grid environment enhances 

the computation/communication ratio. 

 

Keywords—Grid Computing, Task Scheduling, Linear Planning, 

Optimal Scheduling Scheme, Distributed Scheduling Algorithm. 

 

I. INTRODUCTION 

 Grid computing systems are emerging as an important 

new field, different from conventional distributed computing 

systems by its focus on large-scale resource sharing, innovative 

applications, and, in some cases, high-performance orientation. 

The real specific problem that underlies the Grid concept is to 

coordinate the shared resources, and to solve problems through 

distributed programs. The sharing that the grid computing is 

concerned with is not primarily file exchange but rather direct 

access to computers, data, and other resources, as required by a 

range of collaborative problem-solving. 

 Task Scheduling deals with the master-slave paradigm 

on a heterogeneous platform, where resources have different 

speeds of computation and communication. More precisely, this 

deals the problem of allocating a large number of independent, 

equal-sized tasks in a tree based grid computing platform. Each 

node is a computing resource (a processor, or a cluster, or 

whatever) capable of computing and/or communicating with its 

neighbors at (possibly) different rates. We assume that one 

specific node, referred to as the master, initially holds a large 

collection of independent, identical tasks to be allocated on the 

grid.  

 The optimal scheduling scheme that determines the 

optimal number of tasks assigned to each computing node is 

obtained. This is done by pushing a multi-level tree up into a 

similar equivalent tree and then pulling this equivalent tree to 

obtain an optimal task assignment. A static distributed heuristic 

task scheduling algorithm is used. This approach reduces the 

total time taken in transmitting the user jobs to/from the 

resources and the overhead processing time of the jobs at the 

resources. 

 

II. RELATED WORK 

 In this section, we briefly explain about some existing 

approaches. Our focus is to schedule the tasks in such a way 

that to minimize the completion time of all tasks. Subramani et 

al [2002] proposed a simple distributed duplication scheme for 

independent job scheduling in the Grid. A Grid scheduler 

distributes each job to the K least loaded sites. Each of these K 

sites schedules the job locally. When a job is able to start at any 

of the sites, the site informs the scheduler at the job-originating 

site, which in turn contacts the other K-1 sites to cancel the jobs 

from their respective queues. By placing each job in the queue 

at multiple sites, the expectations are improved system 

utilization and reduced average job makespan. The parameter  

K can be varied depending upon the scalability required.  

 

TASK SCHEDULING IN GRID 

COMPUTING PLATFORM 

Journal of Computing Technologies (2278 – 3814) / # 40 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          40

mailto:1sennaga2005@gmail.com
mailto:2balamuruganvsrit@gmail.com
../My%20Documents/Downloads/3civilvsk@gmail.com


 2 

 Silva et al [2003] proposed a resource information free 

algorithm called Workqueue with Replication (WQR) for 

independent job scheduling in the Grid. The WQR algorithm 

uses task replication to cope with the heterogeneity of hosts and 

tasks, and also the dynamic variation of resource availability 

due to load generated by others users in the Grid. Unlike the 

scheme in [103] where there are no duplicated tasks actually 

running, in WQR, an idle resource will replicate tasks that are 

still running on other resources. Tasks are replicated until a 

predefined maximum number of replicas are reached. When a 

task replica finishes, other replicas are cancelled. In this 

approach, performance is increased in situations when tasks are 

assigned to slow/busy hosts because when a task is replicated, 

there is a greater chance that a replica is assigned to a fast/idle 

host. Another advantage of this scheme is that it increases the 

immunity to performance changing, since the possibility that all 

sites are changing is much smaller than one site. 

 Radulescu et al [2005] presented list heuristic 

algorithm called Fast Critical Path (FCP), intending to reduce 

the complexity of the list heuristics while maintaining the 

scheduling performance at the same time. The motivation of 

FCP is based on the following observation regarding the 

complexity of list heuristics. Basically, a list heuristic has the 

following procedures: the O(e + v) time ranking phase, the O(v 

log v) time ordering phase, and finally the O((e + v) × p) time 

resource selecting phase, where e is the number of edges, v is 

the number of tasks and p is the number of resources. Usually 

the third term is larger than the second term. The FCP 

algorithm does not sort all the tasks at the beginning but 

maintains only a limited number of tasks sorted at any given 

time. Instead of considering all processors as possible targets 

for a given task, the choice is restricted to either the processor 

from which the last messages to the given task arrives or the 

processor which becomes idle the earliest. As a result, the time 

complexity is reduced to O (v log p + e). 

 Topcuoglu et al [2005] presented a heuristic called 

Heterogeneous Earliest-Finish-Time (HEFT) algorithm. The 

HEFT algorithm selects the task with the highest upward rank 

(an upward rank is defined as the maximum distance from the 

current node to the exiting node, including the computational 

cost and communication cost) at each step. The selected task is 

then assigned to the processor which minimizes its earliest 

finish time with an insertion-based approach which considers 

the possible insertion of a task in an earliest idle time slot 

between two already-scheduled tasks on the same resource. The 

time complexity of HEFT is O(e×p), where e is the number of 

edges and p is the number of resources. The experimental 

results show that the scheduling algorithms obtain better 

performance than other traditional algorithms.  

 
 

 

 

III. PROBLEM DESCRIPTION 

 
On tree-based grid computing platform, each computing 

node has zero or more son nodes, but has only one father node. 

We take the master-slave grid task scheduling model into 

consideration, following single-port model [3]. Most of 

network models can be simplified into tree-based models to 

resolve and make full use of parallel processing of grid 

computing platforms.  

The task scheduling problem being discussed in this paper 

conforms to the following restriction: 1) tree-based 

heterogeneous grid computing platform; 2) considering the 

migration costs, that is to say, it takes time to transmit tasks; 3) 

each task is computed by one node; one computing node can 

run only one task each time; 4) using single-port master-slave 

scheduling model; 5) all the tasks waiting for scheduling are 

input into the root node. Figure.2 shows a single-level tree-

based grid computing platform with 4 nodes, in which the 

weight of node indicates its computing capacity, whose value 

equals the number of time units that the node takes to run one 

task. The weight of edges indicates the communication 

capacity, whose value equals number of time units that it takes 

to transmit one task from one node to its son.  

 

IV. SINGLE LEVEL TREE BASED SCHEDULING MODEL 

A. Single Level Scheduling Model 

Figure.1 shows general single level tree-based grid 

computing platform, consisting of k computing nodes. Units of 

time required for computing one unit task for each node are, 

respectively. Root node n0 is Master, responsible for 

transmitting tasks to its sons. It takes 110 ,....., kccc units of 

time to transmit one unit task to its sons.  

 

 

 
 

Figure 1. Two level grid computing platform 

 

Paper [2] neglected restrictions that one task starts after 

completion of its communication from its father. The task 

assignment solution obtained using linear planning, is only the 

Journal of Computing Technologies (2278 – 3814) / # 41 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          41



 3 

upper bound of the optimal solution. To schedule M 

independent tasks of the same size on single level grid 

computing platform, the scheduling algorithm should know 

how many tasks should be assigned to the root node n0, and 

how many should be sent to each son node separately, in order 

to minimize the execution time of all tasks, which is called the 

optimal solution of tasks assignment.  

 

B. Task Assignment Example 

 Assume a single-level tree-based grid computing 

platform with 4 computing nodes, shown in Figure 2.  

 

 
Figure2. Grid Computing Platform 

 
To complete 8 tasks, model tasks assignment using the linear 

planning model, and obtain the optimal solution to this 

question, which is {x0,x1,x2,x3}= {1,2,2,3}. 

 

         Minimizing T satisfies the following conditions. 
1) x0+ x1+ x2+x3 = 8 

2) 10x0 ≤  T 

3) 8x1 ≤  T-1 

4) 5x2 ≤  T-3 

5) 4x3 ≤  T-2 

6) x1+ 3x2+2x3+ 4   ≤  T 

7) T, x0, x1, x2, x3 all are positive integers. 

 

V. TASK ASSIGNMENT ON TREE BASED GRID 

 
For multilevel tree, time complexity of tasks assignment 

algorithm to solve linear planning model is more. Costs to solve 

linear planning model will be very high. This paper introduces 

push-pull method. The push-pull algorithm first uses push 

operation to convert a two-level sub-tree into a equivalent node 

from leaf node to root node, which finally become a 

approximately equivalent tree with only one root node; then 

pull method is used to calculate the optimal number of tasks 

assignment to each new two-level sub-tree (called single level 

sub-tree), finally the approximately optimal solution of number 

of tasks assignment to each node in multi-level tree is obtained.  

 

 

 

A. Push Operation 

 

Push operation is defined as follows.  

 Starting from leaf nodes with the same father node, a 

single-level tree consisting of a father node and its leaf 

nodes, is substituted by an equivalent node, whose 

computation and communication capacity is obtained 

by algorithm [4]. That is, first delete the leaf nodes of 

the single level tree in the original tree, then use an 

equivalent node to substitute the root node of the 

single level tree, which has the same computation and 

communication capacity, finally a new tree is created, 

and the equivalent node become a leaf node of T′ 

 Record sequence S of Push process and the link 

between equivalent node and its corresponding single 

level tree 

 Repeatedly use step (1) and step (2) on the newly 

created tree in step (1), until a tree with only one node 

is left.  

 
 An example for push operation is shown below in 

Figure 3, Figure 4 and Figure 5. A multilevel tree with 6 nodes 

n0 to n6 is shown in Figure 3. The computation capacity of 

nodes n0 to n6 is w0 to w6 respectively and the communication 

time needed to transfer the unit tasks from n0 to n1 is c0 and 

from n0 to n2 is c1 and so on. 

 
Figure 3.  Multi-level tree 

 

 First push operation is shown in Figure 4 below. The 

single level tree consisting of n4, n5 and n6 is converted into 

equivalent node n4’. Computation capacity of n4’ is the 

computation capacity of the single level tree with nodes n5 and 

n6 namely w4+w5+w6. 

Journal of Computing Technologies (2278 – 3814) / # 42 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          42



 4 

 
Figure 4.  First Push 

 
 Second push operation is shown in Figure 5 below. The 

single level tree consisting of n4’, n3 and n1 is converted into 

equivalent node n1’. Computation ability of n1’ is equivalent to the 

computation capacity of n4’ and node n3 namely w1+w4+w5+w6 

 
Figure 5.  Second Push 

 

 
B. Pull Operation 

Pull is the inverse process of Push operation. First expand 

the tree of the final result of Push process inversely according 

to the sequence and finally the tree structure is recovered as 

before Push process starts. 

We can obtain the approximately optimal tasks assignment 

by using push-pull method and simplified linear planning of 

multi-level tree into that of single level tree. To obtain the 

optimal number of tasks assigned to each node on tree-based 

grid platform by using linear programming model, we can use 

centralized algorithm which runs tasks on one node (usually 

root node), or distributed algorithm by using parallel computing 

ability in tree grid. Distributed algorithm for task assignment is 

given in the following.  

task_assign (node)  

Begin  

            //If the node is root node of multi-level tree  

if (node is chief root node)  

//Equivalent tree algorithm, only run on chief                 

//node n0;  

ETT ()  

              // If the node is the root node of single level tree  

if (node is root node)  

   foreach child 

     // For all the son node  

    // Send number of tasks nTask to son node i  

  send(nTask,child[i]);  

       else //the leaf of single level tree  

   //Receive number of tasks nTask from root node  

receive(nTask,father);  

 End  

 

C. Heuristic Static Task Scheduling Algorithm 

As shown in Figure 6, each computing node has two time 

axes (computing and communicating). The one with an arrow 

indicates computing of tasks, the other without arrow indicates 

communication of tasks. In reference [2], the optimal solution  

 

 
Figure 6. Optimal task Scheduling 

 

obtained was 17. In fact, at t=13, was still communicating with, 

therefore, it couldn’t start to run a task. This scheduling 

algorithm makes receive of task between son node and its 

father, and start of this task is sequential; both operations can 

not run in parallel. Since in this algorithm, only when a node 

becomes idle, it send request to its father node. We suggest a 

static heuristic algorithm, using the optimal tasks assignment as 

part of heuristic knowledge to dispatch tasks to son nodes, 

which removes the defects of OPCHAT and OPBHAT 

algorithm[2] mentioned above. This algorithm deals with single 

level tree. Multi-level tree can be converted to single level tree 

to use this algorithm 
The task scheduling algorithm is divided into following 

steps:  

 Candidate node set S is initialize to include root 

node and leaf nodes(all nodes are idle);  

Journal of Computing Technologies (2278 – 3814) / # 43 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          43



 5 

 When scheduling tasks, we pick up the most 

appropriate node from candidate set S, and assign 

task to, remove from candidate set S. 

 The strategy of picking up an appropriate node 

from candidate set S is: first, consider whether 

this node gets optimal number of tasks 

assignment; according to the strategy of 

computation speed first OPCHAT(or 

communication bandwidth first OPBHAT), pick 

up one node from candidate set S, and assign a 

task to , remove from candidate set S.  

 Update candidate set S, go to step (2), until 

candidate set S is empty and all task is assigned. 

Note that, when root node is idle, it is always 

assigned a task first.  

 
Candidate set S should be updated when communication 

between root node and its son has completed. As Figure.6 

shows, when t = 7, node has already got first task, at this time, 

root node updates task set S, schedule algorithm chooses next 

node waiting for a task.   

 

VI. RESULTS AND DISCUSSIONS 

 
  GridSim has been used to create the simulation 

environment. The inputs to the simulations are total number of 

gridlets, average MI of Gridlets, MI deviation percentage, 

granularity size and Gridlet overhead time The MIPS of each 

resource is also specified (Table 1) 
 

Resource  MIPS 

R1 20 

R2 44 

R3 69 

R4 296 

R5 126 

R6 210 

R7 204 

 

Table 1: MIPS of Grid Resources 

 This paper adopts GridSim tool to simulate the 

heuristic algorithm of task scheduling given above. GridSim 

provides a series of core function for the establishment and 

simulation of heterogeneous distributed computing 

environment, particularly suitable for simulation and research 

of task scheduling on grid. We simulated a treebased grid 

computing platform with seven nodes, five seconds of granularity 

time, five seconds of overhead time and 10% deviation. Then the 

platform used FCFS and tree-based scheduling algorithm with and 

without job grouping to schedule independent tasks of number of 

50, 100, 150 and 200 of the same scale.    
 The Comparison results between FCFS and Tree based 

task scheduling algorithm of simulation is shown in Table2. 

 
Number of 

Gridlets  

FCFS 

(in seconds) 

Task 

Scheduling (in 

seconds) 

 

10 

 

108 

 

90 

 

50 

 

450 

 

405 

 

100 

 

895 

 

815 

 

200 

 

1670 

 

1612 

 
Table 2. Simulation time for different Gridlets 

 

VII. CONCLUSION 

 

 This paper discusses job scheduling in heterogeneous 

tree-based grid computing environment. By doing research and 

analysis of this problem, that aims at task scheduling with 

minimum total tasks completion time on a multi-level tree grid 

computing platform, a new measure, called Push-Pull is used to 

build a single level tree, and develop a linear planning model 

for it. Through Push-Pull, the problems of optimal number of 

tasks assignment and task scheduling on a multi-level tree is 

iteratively converted to those of a groups of single level tree, 

which can be implemented in parallel on a tree grid platform. 

 GridSim is employed to carry out and simulate the 

tasks assignment algorithm, and distributed task scheduling. 

The results are compared with FCFS. The conclusion is that the 

scheduling algorithm employed is better than FCFS. This Static 

Heuristic Scheduling algorithm only takes the initial research 

on task scheduling in tree based platform. However many 

issues remain open. Further improvement should be done to 

handle more complicated scenario involving grouping of tasks 

and other QoS attributes. The improvement of this algorithm 

should concentrate on discussing simultaneous instead of 

independent task scheduling in heterogeneous tree-based grid 

computing environment. 

 

 REFERENCES 

[1] Abraham A,Buyya R, Nath B. “Nature’s heuristics for 

scheduling jobs on computational grids”, Proc. Of the 

8
th

 International Conference on advanced Computing 

Journal of Computing Technologies (2278 – 3814) / # 44 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          44



 6 

and Communications (ADCOM 2000), New Delhi: 

Tata McGraw-Hill Publishing, 2000, pp.45-52. 

[2] Ibarra OH, Kim CE. Heuristics algorithms for 

scheduling independent tasks on nonidentical 

processors. Journel of the ACM, 2006, pp.280-289. 

[3] Braun TD, Siegel HJ and Beck N, “A comparison of 

eleven static Heuristics for mapping a class of 

independent tasks onto heterogeneous distributed 

computing systems, Journal of parallel and Distributed 

Computing 2001, 61(6), pp.810-837. 

[4] Casanova H.Simgrid: A toolkit for the simulation of 

application scheduling Proceedings of the 1
st
 

IEEE/ACM International symposium on Cluster 

Computing and the Grid. Brisbane: IEEE Computer 

Society Press, 2001, pp.430-437. 

[5] Michael bender, “Flow and stretch Metrics for 

Scheduling Continuous Job Streams, Proceedings of 

the 9
th

 Annual ACM-SINA Symposium on Discrete 

Algorithms, 2005. 

[6] Dong F and Akl S, “Scheduling Algorithms for Grid 

Computing: State of the Art and Open Problems. 

Technical Report, 

http://www.cs.queensu.ca/TechReports/Reports/2006-

504,2004. 

[7] M.Maheswaran, S. Ali, H.J.Siegel, D. Hensgen and R. 

F. Freund, Dynamic Matching and Scheduling of a 

class System, Journel of Parallel and Distributed 

Computing, VOl.59, No. 2, pp.107-131, 2004. 

[8] D.P.Silva, W. Cime and F.V. Brasileiro, “Trading 

Cycles for Information: using Replication to schedule 

Bag-of-Tasks Applications on Computing Grids, in 

Proceedings of Euro-Par 2003, pp.169-180, 2003. 

[9] V.Subramani, R.Keeimuthu, S.Srinivasan and 

P.Sadayappan, Distributed Job Scheduling on 

Computational Grids using Multiple Simultaneous 

Requests, in Proc. Of the 11
th

 IEEE symposium on 

High Performance Distributed Computing (HPDC 

2002), pp.359-366, 2002. 

[10] H.Topcuoglu, S.Hariri and M.Y.Wu, Performance 

Effective and Low- Complexity Task Scheduling for 

Hetergeneous Grid Computing, IEEE Transactions on 

Parallel and Distributed Systems, Vol.13, No.3, 

pp.260-274, 2005. 

    
 

 

 

Journal of Computing Technologies (2278 – 3814) / # 45 / Volume 3 Issue 8

   © 2014 JCT. ALL RIGHTS RESERVED                                                                          45

http://www.cs.queensu.ca/TechReports/Reports/2006-504,2004
http://www.cs.queensu.ca/TechReports/Reports/2006-504,2004

