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Abstract— to date Elliptic Curve Cryptography is 

gaining wide acceptance as an alternative to the 

conventional cryptosystems (DES, RSA, AES, etc.) 

which  tend  to  be  power  hungry.  Elliptic  Curve 

ciphers  require  less  computational  power,  memory 

and communication bandwidth giving it a clear edge 

over the traditional Crypto-Algorithms. This paper 

describes the basic mathematical background of 

Elliptic Curve Cryptography (ECC), and briefly 

analysis its strength. 
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1.    INTRODUCTION 

Cryptographic   mechanisms   based   on   Elliptic 

curves depend on arithmetic involving points of the 

curve. Elliptic curve cryptography shortly known 

as ECC is a public key cryptography. A full 

understanding of this needs a good background of 

mathematics. In this we initially give the 

mathematical concepts necessary to understand and 

implement the arithmetic operations. 
 

2.    FINITE FIELDS 

A  finite  field  consists  of  a  finite  set  of  objects 

called field elements together with the description 

of two operations - addition and multiplication-that 

can  be  performed  on  pairs  of  finite  elements. 

These operations must possess certain properties. 

It turns out that there is a finite field containing q 

field elements if and only if q is a power of a prime 

number, and furthermore that in fact for each such 

q there is precisely one finite field.  The finite field 

containing q elements is denoted by Fq. 

Here only two types of finite fields Fq  are used - 
finite fields Fp  with q = p, p, an odd prime which 

are called prime finite fields, and finite fields F m 
2 

with  q  =  2
m   

for  some  m    1  which are  called 

characteristic 2 finite fields. In order to precisely 

specify cryptographic schemes based on ECC the 
details  about  the  above  fields  are  essential  and 

hence given below: 
 
 

2.1.           THE FINITE FIELD F 

The finite field Fp  is the prime field containing p 

elements.  Although there is only one prime finite 
field Fp on each odd prime p, there are many 

different  ways  to  represent  the  elements  of  Fp. 

Here the elements of Fp  are represented by the set 

of integers: {0, 1, 2, ..., p-1} with addition and 
multiplication defined as follows: 

 
(i) Addition: If a, b Fp, then a + b = r in Fp where 

r [0, p-1] is the remainder when the integer (a + 
b)  is  divided  by p.    This  is  known  as  addition 

modulo p and written as a + b  r (mod p) 

E.g.:      if p = 7, a = 4, b = 5 i.e. 4 and 5  [0, 7] 

Now a + b = 4 + 5 = 9 = 2 since 9 = 1 x 7 + 2 and 

multiple of 7 is removed. 

   4 + 5 = 2 in F7 

 
(ii) Multiplication: If a, b Fp, then a. b = s in Fp, 

where  s  [0,  p-1]  is  the  remainder  when ab  is 
divided by p.   This is known as multiplication 
modulo p and written as a.b = s (mod p) 

i.e. ab - s is a multiple of p. 

in the example 4.5 = 20 = 6 (mod 7) 

= -1(mod 7) 

Here 0 is the addition identity and 1 is the 

multiplication identity.    For subtraction and 

division we need the definition of inverse in the 

field. 



G.Jai Arul Jose et al. / Journal of Computing Technologies ISSN  2278 – 3814 

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 

 

 

 

 
 
 

(iii) Additive inverse: The additive inverse of a 

Fp   is  (-a)  or  it  is  the  unique  solution  of  the 

equation a + x  0 (mod p). 

 
(iv) Multiplicative inverse: For a Fp, the 

multiplicative inverse is a
-1 

which is also the unique 

solution of ax  1 (mod p). 
 
 

2.2.           FINITE FIELD F m 
2 

The finite field F m   is  the  characteristic 2  finite 
2 

field containing 2
m  

elements.   Although there is 

TABLE 1 

Field Reduction polynomial f(x) 
113 

F2 x113 + x9 + 1 
F2

131 x131 + x8 + x3 + x2 + 1 
F2

163 x163 + x7 + x6 + x3 + 1 
F2

193 x193 + x15 + 1 
F2

233 x233 + x74 + 1 
F2

239 x239 + x36 + 1 or x239 + x158 + 1 
F2

283 x283 + x12 + x7 + x5 + 1 
F2

409 x409 + x87 + 1 
571 

F2 x571 + x10 + x5 + x2 + 1 
 
Arithmetic  operation       on     F 4        with        the 

2 
4
 

only one characteristic 2 finite field F m  for each reduction   polynomial  f(z) = z + z+1 is 
2 

power 2
m 

of 2 with m  1, there are many different 

ways to represent the elements of F m. 
2 

The elements of F m  should be represented by the 
2 

set of binary polynomials of degree m - 1 or less: 

{a0 + a1x + … + am-1x
m-1 

: ai  {0,1} } 
Here addition and multiplication are in terms of the 
binary polynomial f(x) of degree m, known as the 

reduction polynomial. 

Addition: (z
3 
+ z

2
+1) + (z

2 
+ z+1) = z

3
+z 

Subtraction:         (z
3 

+ z
2
+1) - (z

2 
+ z+1) = z

3
+z [

-1 = 1 in F2] 

Multiplication: (z
3 
+ z

2
+1) . (z

2 
+ z+1) = z

2
+1 

i.e. (z
3 
+ z

2
+1) + (z

2 
+ z+1) = z

5 
+ 2 (z

4 
+ z

3 
+ z

2
) + z 

+ 1 = z
5 
+ z + 1 [z = 0 in F2] 

(z5 + z + 1) mod (z4 + z + 1) = z2 + 1 

Inversion: (z
3
+z

2
+1)

-1
=z

2 
since (z

3
+z

2
+1)z

2 
mod (z

4
 

+z + 1) = 1. 

In F 
2 

the arithmetic operations are made simple if 

(i) Addition: If a = a0 + a1x+....+am-1x
m-1

, b = b0 + 

b1x +.... + bm-1x
m-1 both  F m, then a + b = r in F2

m
 

2 

where r = r0 + r1x +.... + rm-1x
m-1 

where ri  = ai + bi 

(mod 2). 

 
(ii) Multiplication: If a and b are as defined above, 

a.b = s in F m, Where s = s0 + s1x +.... + sm-1x
m-1 

is 
2 

the remainder when ab is divided by f(x) with all 
the coefficient arithmetic performed modulo 2. 

As in the 2.1 the addition identify is the polynomial 

0 and the multiplicative identify is the polynomial 

1. 

 
(iii) Additive inverse: As in the previous case the 

binary representation is made. 

Let A = z
3 
+ z

2 
+ 1 has binary representation 

1 1 0 12 

B = z
2 
+ z + 1                     0 1 1 12 

Sum A+B =         1 0 1 02 

A-B            =       1 0 1 02 

A*B           =       0 1 0 12 

A/B                   =       0 1 0 02 

Thus polynomial arithmetic can be made simple 
though binary representation in F2. 
 
 

3.    ELLIPTIC CURVES 

An elliptic curve over Fq is defined in terms of the 

solutions to an equation in  Fq. The form of the 
solution of a + x = 0 in F m. 

2 equation defining an elliptic curve over Fq differs 

 
(iv) Multiplicative inverse: It is the solution of ax 

= 1  in F m. The characteristic 2  finite  field F m 

depending on whether the filed is a prime finite 
field or a characteristic 2 finite field. 

2 

should have: 
2 

3.1.  ELLIPTIC CURVES OVER Fp
 

m  {113, 131, 163, 193, 233, 239, 283, 409, 571} 
Let F

 
be a prime finite field so that p is an odd

 
and   all   the   algebraic   operations   should   be 

performed    by    using    the    irreducible    binary 

p 

prime number and let a, b Fp satisfy 4a
3

 

 

+ 27b
2 


polynomial of degree m given in Table 1. 

Examples 

(i) The elements of F29 are [0, 1, …, 28] 
Addition: 17+20 = 8 since 37 mod 29 = 8 
Subtraction: 17-20=26 since -3mod29=26 

Multiplication: 17.20 = 21 since 340 mod 29 = 21 

Inversion: 17 -1=12 since 17.12mod29=1 

(ii)  The  elements    of  F2
4   

are    the    16    binary 

polynomials of  degree atmost 3: 

0, 1, z, z+1, z
2
, z

2
+1, z

2
+z, z

2
+z+1, z

3
, z

3
+1, z

3
+z, 

z
3
+z+1, z

3
+z

2
, z

3
+z

2
+1, z

3
+z

2
+z, z

3
+z

2
+z+1. 

0 (mod p).  Now an elliptic curve E(Fp) defined by 
the  parameters a,  b    Fp   consists of the  set  of 

solutions or points P = (x, y) for x, y  Fp  to the 

equation 

y
2 

= x
3 
+ ax + b (mod p)   -------- (i) 

together with an extra point 0 called the point at 
infinity. (i) is called the defining equation of E(Fp). 

For a given point P = (xp, yp), xp  is called the x - 

coordinate of P and YP; the y-coordinate of P. The 

number of points is denoted by # E(Fp) and it 

satisfies the inequality. 

p + 1 - 2p   # E(Fp)  p + 1 + 2p 
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2 

2 

 

 
 

Point Addition Rule 

 
1. Rule to add the point at infinity to it self 

0 + 0 = 0. 

2. Rule to add point at infinity to any other point 

(x, y) + 0 = 0 + (x, y) = (x, y) for all (x, y)  E(Fp) 

3.  Rule  to  add  two  points  with  the  same  x  - 
coordinates 

(x, y) + (x, -y) = 0 for all (x, y)  E(Fp) 

i.e. the negative of (x, y) is - (x, y) = (x, -y) 

3.  Rule  to  add  two  points  with  the  same  x  – 

coordinates: 

(x, y) + (x, x + y) = 0 for all (x, y)  E(Fp) 

i.e. the negative of (x, y) = - (x, y) = (x, x + y) 
4.  Rule  to  add  two  points  with  different  x- 

coordinates: 

Let (x1, y1) and (x2, y2)  E(F2
m
) be two points such 

that x1  x2, Then                             (x1,  y1)  +  (x2, 

y2) = (x3, y3) ; 

Where   x3 = 
2 
+  + x1+x2 + a in F2

m
 

y3 =  (x1+x3) + x3 + y1 in F2
m, 

4.  Rule  to  add  two  points  with  different  x- 
and y1 + y2                             in                F m

 

coordinates: 
Let (x1, y1) and (x2, y2) are two points in E(Fp) and 

that x1  x2, 

Then (x1, y1) + (x2, y2) = (x3, y3); where 

x3 = 
2 
- x1 - x2 (mod p), 

 =                                                         2 

x1 + x2 

5. Rule to add a point to itself (doubling), 

Let (x1, y1)  E(F m) be a point with x1  0. 
2 

Then (x , y ) + (x , y ) = (x , y ) where
 

1      1             1      1             3      3 

y3 = (x1 - x3) - y1 (mod p), x3 = 
2 

+  + a            in F m 

where  =  y2 - y1 (mod p) 
x2- x1 

5. Doubling or Rule to add a point to itself, 

Let (x1, y1)  E(Fp) with y1  0. 

 

y3 = x1
2+ ( + 1) x3 in F m 

2 

 = x1 +  y1    in F m 
    2   

x1
 

2 

and 

Then (x1, y1) + (x1, y1) = (x3, y3) where 

x3 = 
2 

- 2x1 (mod p), 

y3 =  (x1 - x3) - y1(mod p), and 

 = 3x1
2 

+ a       (mod p) 
2y1 

6. Point multiplication: 
In  point  multiplication a  point  P  on  the  elliptic 

curve is multiplied with a scalar K using the elliptic 

curve equation to obtain another point Q on the 

same elliptic curve. 

i.e. KP = Q 

Suppose K = 23 

Then KP = 23P = 2 (2(2(2P)+P)+P)+ P. 

As before given a point P the scalar multiplication 

is KP i.e. adding P repeatedly K times with itself. 
 

4.    GENERAL FORM OF EC EQUATION 

An elliptic curve E over a field K is defined by the 

equation 

E = y
2 

+ a1xy + a3y = x
3 

+ a2x
2 

+ a4x + a6 -------(4.1) 

where a1, a2, a3, a4, a6   K and   0, where  is 
the discriminant of E and in defined as follows 

 = -d2
2
d8 - 8d4

3 
- 27d6

2 
+ 9d2d4d6 

d2 = a1   + 4a2 

d4 = 2a4 + a1a3 

d6 = a3   + 4a6
 

Thus point multiplication uses point addition and
 

d8 = a1    6 
2         2 

2  6       1  3  4         2  3 
2
a  + 4a a - a a a + a a - a4 . 

point doubling repeatedly to find the result. 
 

3.2. ELLIPTIC CURVES OVER F m 
2 

Let F m be a characteristic 2 finite field, let a, b 
2 

F m   such  that  b    o  in  F m.  Then  a  (non-super 

If L is any extension field of K, then the set of L- 
rational Points on E is 

E(L) = { (x, y)  L x L : y
2 

+ a1xy + a3y - x
3 

- a2x
2 

- 

a4x - a6 = 0 }U{  } 

where  is the point at infinity. 
2                                                                2                                                                              Equation  (4.1)  is  called  a  Weierstrass  equation. 

singular) elliptic curve E(F m) over F m   defined by 
2                       2                                                       The condition     0 ensures that the elliptic curve 

the parameters a, b  F m  consists of the set of 
2 

solutions or points P = (x, y) for x, y  F m to the 
2 

equation. 

is "smooth", that is there are no points at which the 

curve has two or more district tangent lines. 

Example: 

The equations 

y2 + xy = x3 + ax2 + b in F m 
2 E1 = y2 = x3 - x 

together with an extra point 0 called the point at 

infinity.The number of points on E(F m) denoted by 
2 

#E(F m) satisfies the in equality 
2 

2
m
+1 - 22

m   
 #E(F2

m
)  2

m 
+1 + 22

m
. 

The addition rule here are 

1. Rule to add the point at infinity to itself: 

0 + 0 = 0. 

2. Rule to add point at infinity to any other point: 

(x, y) + 0 = 0 + (x, y) = (x, y) for all (x, y)  E(Fp) 

E2 = y
2 

= x
3 

+ ¼ x + 
5
/4 are defined over the field R 

of real numbers. 
They are graphed in figure 1 and 2. 
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Figure 1: Elliptic Curves over R 

 

 
 

 
 

 
5.1.  KEY EXCHANGE 

Key exchange using elliptic curves can be done in 

the following manner. First pick a large integer q, 

which is either a prime number p or an integer of 
m 

the form 2 and elliptic curve parameters a and b 

for the equation 
2                            2 

y  mod p = (x + ax + b) mod p 

or for the equation 
2                      3          2 

y  + xy = x +ax  + b 
 

5.    ELLIPTIC CURVE CRYPTOGRAPHY 

To form a Cryptographic system using elliptic 

curves, it is necessary to find a  ―hard problem‖ 

corresponding to factoring the product of two 

primes or taking the discrete logarithm. 

Consider the equation Q = kP, where Q, P  Ep(a, 

b) and k < p. It is relatively easy to calculate Q 

given k and P. but it is relatively hard to determine 
k given Q and P. This is called the discrete 
logarithm problem for elliptic curves. 

Here is an example taken form the Certicom Web 

site   (www.certicom.com).   Consider   the   group 

E23(9,  17).  This  is  the  group  defined  by  the 

This defines the elliptic group of points Eq(a, b). 

Next, pick a base point G = (x, y) in Eq(a, b) whose 

order is a very large value n. The order n of a point 
G  on  an  elliptic  curve  is  the  smallest  positive 
integer n such that nG = O. Eq(a, b) and G are 

parameters of the Cryptosystem known to all 
participants. 

A key exchange between users A and B can be 

accomplishes as follows: 

 
Global Public Elements 
Eq(a, b)         elliptic curve with parameters a, b and 

q, where q is a prime or an integer of 
m 

equation y
2 

mod 23 = (x
2 

+ 9x + 17) mod 23. What 
is the discrete logarithm k of Q = (4, 5) to the base 

P = (16, 5)? The brute-force method is to compute 

multiples of P and Q is found. Thus 

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 

20); 

5P = (13, 10); 6P = (7, 3); 7P = (8, 7); 

8P = (12, 17); 9P = (4, 5) 

Because 9P = (4, 5) = Q, the discrete logarithm is Q 

= (4, 5) to the base P = (16, 5). In a real application, 

k  would be so  large as to make the brute-force 

approach infeasible. 
 
 

 
Figure 2: Elliptic Curves over R 

the form 2 

G Point on elliptic curve whose order is large 

value n 

User A Key Generation 
Select private nA   nA < n 

Calculate public PA                  PA = nA  G 
User B Key Generation 

Select private nB   nB < n 

Calculate public PB                  PB = nB  G 
Generation of Secret Key by User A 

K = nA  PB 

Generation of Secret Key by User B 

K = nB  PA 

 
1)   A selects an integer nA less than n. This is A’s 

private key. A then generates a public key PA = 

nA  G; the public key is a point in Eq(a, b). 

http://www.certicom.com/
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ECC 

Key 

(bit) 

 

RSA 

Key 

(bit) 

 

 
Time 

The 

number 
Compu- 

ters 

 
Memor 

y 

 

112 430 <5 

minute 105 Very 

small 
 

160 760 600 

months 4300 4GB 
 

192 1020 3 million 
years 114 170GB 

 
256 

 
1620 1016 

years 

 
0.16 

 
120TB 

 

 

 

2)   B  similarly  selects  a  private  key   nB     and 

computes a   public key PB = nB  G 

3)   A generates the secret key K = nA   PB. B 

generates the secret key K = nB  PA. 
To break this scheme, an attacker would need to be 
able to compute k given G and kG, which is 

assumed hard. 

As an example provided by Ed Schaefer of Santa 

Clara University, take p = 211; Ep(0, -4), which is 

equivalent  to   the  curve y
2  

= x
3 

– 4; and G = (2, 

2). 

One can calculate that 240G = O. 

A’s private key is nA = 121, A’s public key is PA = 

121(2, 2) = (115, 48). B’s private key is nB  = 203, 
so B’s public key is PB  = 203(2, 2) = (130, 203). 
The shared secret key is 121(130, 203)         = 
203(115, 48). 

The secret key is a pair of numbers. If this key is to 

be used as a session key for conventional 

encryption,   then   a   single   number   must   be 

generated. 
 

 
5.2. ELLIPTIC CURVE 

ENCRYPTION/DECRYPTION 

There are several approaches to 
encryption/decryption using elliptic curves. Here a 

simple approach is explained. The first task in this 

approach  is  to  encode  the  plain  text  message 
m to be  sent as an x-y point Pm. It is the point Pm 

that will be encrypted as a ciphertext and 

subsequently decrypted. 

As with key exchange system, an 

encryption/decryption system  requires  a  point  G 

and an elliptic group Eq(a, b) as parameters. Each 

user A selects a private key nA  and generates a 

public key 

PA = nA  G. 

To encrypt and send a message Pm to B, A chooses 
a  random  positive  integer  k  and  produces  the 
ciphertext Cm consisting of the pair of points 

Cm = {kG, Pm + kPB} 
Note that A has used B’s public key PB. To decrypt 
the ciphertext, B multiplies the first point in the 
pair by B’s secret key and subtracts the result from 

the second point: 

Pm + kPB – nB(kG) = Pm + k(nBG) – B(kG) 

= Pm 

 
A has masked the message Pm by adding kPB to it. 

Nobody  but  A  knows  the  value  of  k,  so  even 
though PB  is a public key, nobody can remove the 

mask  kPB.  However,  A  also  includes  a  ―clue,‖ 

which is enough to remove the mask if one knows 
the private key nB. For an attacker to recover the 

message, the  attacker would  have to  compute k 
given G and kG, which is assumed hard. 

As an example, taken from ―Koblitz, N., A Course 

in Number Theory and Cryptography‖, of the 

encryption, take  p  =  751;  Ep(-1,  188),  which is 

equivalent to the curve y
2 

= x
3 

– x + 188; and G = 

(0, 376). Suppose that A wishes to send a message 

to B that is encoded in the elliptic point Pm = (562, 

201) and that  A  selects  the  random number k = 
386. B’s public key is PB  = (201, 5). Then 386(0, 

376) = (676, 558), and (562, 201) + 386(201, 5) = 
(385, 328). Thus A sends the cipher text {(676, 

558), (385, 328)}. 
 

6.    THE SECURITY OF ELLIPTIC CURVE 

CRYPTOGRAPHY 

The purpose of any Public-key Cryptosystem is to 
maintain the security and integrity of the resources, 

avoid the attack of any people, any event etc. while 
the   anti-attack   performance   of   the   algorithm 

assures its security. In 6
th  

International 

Cryptography   Conferences   in    January   2000, 

Elliptic Curve Cryptography as well as RSA were 
the only two algorithms that were recommended. 

Actually in the term of security, Elliptic Curve 
Cryptography provides the highest strength per bit 

among all the Cryptosystems. 

The security of Elliptic Curve Cryptography is 

depends on how difficult it is to determine k given 

kP and P. This is referred to as the elliptic curve 

logarithm problem. The fastest known technique 

for taking the elliptic curve logarithm is known as 

the Pollard Rho method. 

 
TABLE 2: THE TIME SPENT ON CRACKING ALL SIZE KEYS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The longer the key is, the higher the security 

strength it has. But it adversely affects the running 

performance. In April 2000, there was a research 

on the cost of cracking the different encrypted 

algorithms, which was done by the RSA lab. Table 

2 displays its results, where Elliptic Curve 

Cryptography shows its advantage in the condition 

of considering both running performance and 

strength. For the same security level, the key size 

of  Elliptic  Curve  Cryptography is  much  shorter 

RSA’s.     In     other     words,     Elliptic     Curve 

Cryptography      provides      a      more      secure 
Cryptosystem for the same length as RSA. Table 2 

also  shows  what  the  attacker need  is  the  larger 

memory rather than the more computers with the 

increasing of key size. That means when Elliptic 
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Sl. 

No 
. 

 
Proces 

sor 

 
M 

Hz 

 

163 
– 

bit 

 

192 
– 

bit 

 

25 
6 – 
bit 

 

38 
4– 
bit 

52 

1 

– 
bit 

 
1 

Ultra 

SPAR 
C II 

 

45 

0 

 
6.1 

 
8.7 

 
- 

 
- 

 
- 

 
2 

Stron 
gAR 

M 

 

20 

0 

 

22. 

9 

 

37. 

7 

 
- 

 
- 

 
- 

 
3 

 

Pentiu 

m II 

 

40 

0 

 
- 

 

18. 

3 

 

42 

.4 

13 
6. 

4 

31 
0. 

4 
 

4 
Pentiu 
m II 

40 
0 

 

- 
 

2.1 
5. 
1 

16 
.4 

27 
.8 

 

S 

l. 

N 

o 
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Curve Cryptography is exploited, it needs smaller 
memory. 

TABLE 3: KEY SIZE RATIO 

TABLE 4: SAMPLE ELLIPTIC CURVE EXPONENTIATION TIMINGS 

OVER PRIME FIELDS (IN MILLISECONDS) 

ECC Key 

size (Bits) 

 

163 
 

283 
 

409 
 

571 

Traditional 

Key Size 

(Bits) 

 
1024 

 
3072 

 
7680 

 
15360 

Key Size 
Ratio 

 

1 : 6 
 

1 : 11 
 

1 : 19 
 

1 : 27 

 

Table 3 is the key size ratio of Elliptic Curve 

Cryptography to traditional key with the 

strengthening of security, the Elliptic Curve 

Cryptography key size is smaller and it increases 

slowly.  In  general,  Elliptic  Curve  Cryptography 

key is small, efficient and low power. 

In addition to the above advantages, fast speed 

is another characteristic of Elliptic Curve 

Cryptography. As we know, RSA is based on large 

integer factorization; all the process is rather 

complicated and strict. Although Elliptic Curve 

Cryptography processes of creating private key is 

complicated, we can calculate Public-key very 

easily. Speed in the process of the decrypted and 

signature is rather faster. In the equivalent of 

security, the  speed  of  exploiting 160-bit Elliptic 

Curve Cryptography is about 10 times faster than 

that of 1024-bit RSA or DSA. 
 

7.    PERFORMANCE ADVANTAGES OF ECC 

In Table 4 rows 1 and 2 are taken from ―V. Guptha, 

S. Guptha and S. Chang, Performance Analysis of 

Elliptic Curve Cryptography for SSL, ACM Wksp. 

Wireless Security, Mobicom 2002,  Atlanta, GA, 

Sept.                                                                 2002, 

 
 
 
 
 
 
 
 

 
TABLE 5: SAMPLE RSA ENCRYPT/DECRYPT TIMINGS (IN 

MILLISECONDS). 

http://research.sun.com/prolects/crypto/performanc 

e.pdf‖, and do not claim to be optimized, but show 
In  Table  5  RSA 

d 
is  the  Private-key  operation, 

two different platforms and are directly comparable whereas RSA 
e 

is the Public-key operation. Rows 1 

to RSA numbers for the same platforms. 
Rows 3 and 4 in Table 4 are taken from ―M. Brown 

et   al.,   Software  implementation  of   the   NIST 

Elliptic curves over prime fields, D. Naccache, Ed., 

Topics in Cryptology – CT-RSA 2001, LNCS, vol. 

2020, Springer – Verlag, 2001, pp. 250 -65‖ and 

take advantage of the special form of the 

generalized Mersenne primes for the NIST curves 

given in ―FIPS Pub 186 – 2, Digital Signature 

Standard         (DSS),         Jan.27,                  2000. 

http://csrc.nist.gov/publications/fips/fips186– 

2/fips186-2-change1  .pdf‖   by  using  specialized 

routines for fast modular reduction for these primes 

―J.  Solinas,  ‖Generalized   Mersenne  Numbers,‖ 

Tech. rep.,1999, http:// www.cacr.math. 

uwaterloo.ca  /techreports/1999/corrpp-39.  ps‖. 

Row 3 uses affine coordinates and a binary 

nonadjacent form for  the  exponent. Row 4  uses 

mixed Jacobian-affine coordinates and a windowed 

nonadjacent form for the exponent. 

and  2  are  from  ―V.  Guptha,  S.  Guptha  and  S. 

Chang, Performance Analysis of Elliptic Curve 

Cryptography for SSL, ACM Wksp. Wireless 

Security, Mobicom 2002, Atlanta, GA, Sept. 2002, 

http://research.sun.com/prolects/crypto/performanc 

e.pdf], as above in the elliptic curve timings, Row 3 

is from ―Performance of RSA on ARM and Palm, 

http://www.digisec.se/mcrypt_performance. htm‖. 
 

8.    CONCLUSION 

In  the  past  few years ECC  has  evolved from a 

fringe activity to a major challenger to the popular 

RSA. There are many drawbacks in current 

encryption algorithm in respect of security, real- 

time performance and so on, and researchers are 

presenting various algorithms. Among them,  the 

ECC  is  evolving as  an  important  Cryptosystem, 

and shows a promise to be an alternative of RSA. 

Elliptic curves offer major advantages over 

traditional systems such as increased speed, less 

memory and smaller key size. Equal security can 

http://research.sun.com/prolects/crypto/performanc
http://csrc.nist.gov/publications/fips/fips186
http://www.cacr.math/
http://research.sun.com/prolects/crypto/performanc
http://research.sun.com/prolects/crypto/performanc
http://research.sun.com/prolects/crypto/performanc
http://www.digisec.se/mcrypt_performance
http://www.digisec.se/mcrypt_performance
http://www.digisec.se/mcrypt_performance
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be  provided  by  much  smaller  key  length  using 

ECC, to this extent that it can actually be faster 

than others. In addition, less storage, less power 

and less memory than other systems make it 

possible to implement Cryptography in many 

special platforms such as wireless devices, laptop 

computers and smart card. 
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