
Om Singh Parihar et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

Volume 1

Issue 2

JOURNAL OF COMPUTING TECHNOLOGIES

ISSN 2278 – 3814

Improved LALR (1) Parsing
Mr. Om Singh Parihar1, Mrs. Dhawal Gupta2

1&2Computer Science & Engineering,
1&2RGPV Bhopal (M.P.), India

1&2
Gyan Ganga College of Technolgy,Jabalpaur(M.P.),India

1ommsingh@gmail.com
2guptadhawal12@gmail.com

Abstract—LALR (1) is one of most popular bottom

up parsing method. Various methods have been given

to remove shift-reduce reduce-reduce conflict during

parsing. These methods are efficient but detect conflicts

in later stage of parsing. In this paper method that is

being proposed detects conflicts in earlier stage of

parsing so a parsing table that contains conflicts using

existing approaches of table construction now can

avoid conflicts earlier. Method that is being proposed

here concentrates on the way table is constructed for

LALR (1) parser. Slight change in LALR (1) table

construction can avoid conflicts in better way.

Keywords— LALR (1) parsing, Conflicts, LALR (1)

parsing table.

1. INTRODUCTION

Working with LALR (k) grammars has great

advantage that they can be used by parser

generators to automatically produce fully efficient

and operational parsers, encoded in languages like C,

C++, Java, Haskell, etc. Examples of LALR parser

generators are CUP [CUP 2007], YACC [Johnson

1979], Frown [Frown 2007], among others. During

parsing problems arises while we have two

alternatives to apply to determine nest parsing

decision and we are not sure which one is correct to

choose. This happens due to the recurrent existence

of conflicts, i.e., nondeterministic points in the

parser. By analyzing Output file created by parser

generator conflicts can be removed usually. This

output consists of a considerable amount of textual

data, from the numerical code associated to grammar

symbols to the grammar and LALR automaton itself.

Using the Notus language as an example, the Bison

parser generator (the GNU version of YACC) dumps

a 54 Kb file, containing 6244 words and 2257 lines.

The big amount of data and the fact that none of it is

interrelated – hyperlinks are not possible in text files,

make it very difficult to browse. The level of

abstraction in these log files is also a problem, since

non experts in LALR parsing may not interpret them

accordingly. When facing these difficulties, these

users often migrate to LL parser generators. Despite

their simplified theory, this approach is not a real

advantage, since LL languages are a proper subset of

the LALR ones. Even for experts users, removing

conflicts in such harsh environment causes a

decrease of productivity.

To face this scenario, in this paper we present a

methodology for removing conflicts in non LALR(1)

grammars. This methodology consists of a set of

steps whose intention is to capture conflictsat in

earlier stage of LALR(1) generator: we using these

steps to accomplish this goal(I) create set of LR(1)

items; (ii)create LALR(1) parsing table following

rule as merge only those do not cause conflict, state

those causes conflcits are not merged. This article is

organized as follows: Section 2 gives the necessary

background to understand the formulations used in

later sections; Section 3 discusses conflicts in LR

and LALR parsing; Section 4 presents the proposed

methodology.

2. BACKGROUND

Before we present the methodology itself, it is

necessary to establish some formal concepts,

mailto:1ommsingh@gmail.com
mailto:2guptadhawal12@gmail.com

Om Singh Parihar et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

conventions, definitions and theorems. Most of the

subject defined here is merely a reproduction or

sometimes a slight variation of what is described in

[Charles 1991], [DeRemerandPennello [1982], [Aho

and Ullman 1972] and[KristensenandMadsen [1981].

It is assumed that the reader is familiar with LR and

LALR parsing. A context free grammar (CFG) is

given by G = (N, Σ, P,S) N is a finite set of

nonterminals, Σ the finite set of terminals, P the set

of rules in G and finally S ∈ N is the start symbol. V

= N ∪ Σ is said to be the vocabulary of G. When not

mentioned the opposite, a given grammar is
considered to be in its augmented form, given by (N ,

Σ , P , S), where

N = {S } ∪ N ,

Σ = {$} ∪ Σ,

P = {S → S$} ∪ P ,

considering that S ∈ N and $ ∈ Σ.The following

conventions are adopted: lower case greek letters (α,
β, ...) define strings in V ∗ ; lower case roman letters

from the beginning of the alphabet(a, b, ...) and t,
bold strings and operator characters (+, −, =, ., etc)

represent symbols in Σ, whereas letters from the end

of the alphabet (except for t) denote elements in Σ ∗ ;

upper case letters from the beginning of the alphabet
(A, B, ...) and italic strings represent nonterminals in

N , while those near the end (X, Y ,...) denote

symbols in V . The empty string is given by λ and

the EOF markerby $. The length of a string γ is

denoted as |γ|. The symbol Ω stands for

the―undefined constant‖. An LR(k) automaton is

defined as a tuple LRAk = (Mk , V, P, IS, GOT Ok
,REDk), where Mk is the finite set of states, V and P

are as in G, IS is the initial state, GOT Ok : Mk × V

∗ → Mk is the transition function and REDk : Mk

×∗∗Σk → P(P) is the reduction function, where Σk =

{w | w ∈ Σ ∗ ∧ 0 ≤ |w| ≤ k}.

A state, either a LR or LALR one, is a group of
items. An item is an element in N × V ∗ × V ∗and

denoted as A → α • β.The usual way to build the
LALR (k) automaton is to calculate the LRA0

automaton first. For such, let the components of

LRA0 be defined. The set of states is generated by

the following equation:

M0 = {F −1 (CLOSURE ({S → •S$}))}∪{F −1

(CLOSURE(F (q))) | q ∈ SUCC(p) ∧ p ∈ M0 }

where F is a bijective function that maps a state to a
set of items (excluded the empty set) and

CLOSURE(is) = is ∪ {B → •β | A → α • Bω ∈ is ∧

B → β ∈ P } SUCC(p)= {F −1 (ADVANCE(p, X)) |

X ∈ V } ADVANCE(p, X) = {A → αX • β | A → α •

Xβ ∈ F (p)}

The initial state (IS) is obtained by F −1
(CLOSURE({S → •S$})). RED0 (q, λ) is stated as

RED0 (q, λ) = {A → γ | A → γ• ∈ F (q)}

GOTOk , ∀k ≥ 0, can be defined as: GOTOk (p, λ) =

p
GOTOk (p, X) = F −1 (CLOSURE (ADVANCE (p,

X)))

GOTOk (p, Xα) = GOTOk (GOTOk (p, X), α), ∀α =

Om Singh Parihar et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

λ

From this point, when mentioning a state p, it will be

known from the context whether it refers to the

number or to the set of items of the state. The LALR

(k) automaton, LALR (k) , is a tuple (M0 , V, P, IS,

GOTOk , REDk),Where except for REDk , all

components are as in LRA0 . Before considering

REDk , it is necessary to model a function to capture

all predecessor states for a given state q, under a

sentential form α. Let PRED be such function:

P RED(q, α) = {p | GOT Ok (p, α) = q} Then, REDk

(q, w) = {A → γ | w ∈ LAk (q, A → γ•)}

where LAk is the set of lookahead strings of length
not greater than k that may follow a processed right

hand side of a rule. It is given by LAk (q, A → γ) =

{w ∈ F IRSTk (z) | S ⇒ αAz ∧ αγ access q} rm∗

where F IRSTk (α) = {x | (α ⇒ xβ ∧ |x| = k) ∨ (α ⇒ x

∧ |x| < k)}lm∗ ∗ and αγ access q iff P RED(q, αγ) =

∅. For k = 1, DeRemer and Pennello proposed an

algorithm to calculate the lookaheads in LA1
[DeRemer and Pennello 1982] and it still remains as

the most efficient one [Charles 1991]. They define

the computation of LA1 in terms of FOLLOW1 :
(M0 × N × M0) → P(Σ). The domain (M0 × N × M0

) is said tobe the set of nonterminal transitions. The

first component is the source state, the second the

transition symbol and the last one the destination

state. For presentation issues, transitions will be

written as pairs if destination states areirrelevant. F

OLLOW1 (p, A) models the lookahead tokens that

follow A when ω becomes the current handle, as

long as A → ω ∈ P . These tokens arise in three

possible situations [DeRemer and Pennello 1982]:

a) ∃ C → θ • Bη ∈ p, such that p ∈ PRED(q, β), B →
βAγ ∈ P and γ ⇒λ.

In this case, FOLLOW1 (p, B) ⊆ F OLLOW1 (q, A).

This situation is captured by a relation named
includes: (q, A) includes (p, B) iff the previous

conditions are respected;
(b) given a transition (p, A), every token that is

directly read from a state q, as long as GOT O0 (p,

A) = q, is in LA1 (p, A). This is modeled by the

direct read function:

DR(p, A) = {t ∈ Σ | GOT O0 (q, t) = Ω ∧ GOT O0

(p, A) = q}
c) Given (p, A), every token that is read after a

sequence of nullable nonter minal transitions is in

LA1 (p, A). To model the sequence of nullable

transi- tions the reads relation is introduced: (p, A)

reads (q, B) iff GOT O0 (p, A) =

∗

q e B ⇒ λ.

The function READ1 (p, A) comprises situations (b)
and (c):READ1 (p, A) = DR(p, A) ∪{READ1 (q, B)

| (p, A) reads (q, B)}From this and (a), FOLLOW1 is
written as:

Om Singh Parihar et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

FOLLOW1 (p, A) = READ1 (p, A)∪Finally,LA1 (q,

A → ω) ={FOLLOW1 (p, A) | p ∈ PRED(q, ω)}

{FOLLOW1 (q, B) | (p, A) includes (q, B)}

3. CONFLICTS IN NON LALR (K) GRAMMARS

path from IS to q, the inconsistent state. As a

consequence, these conflicts do not

representambiguity, but do not imply in the existence

of a k.

Conflicts arise in grammars when, for a state q in the

LALR(k) automaton and

a lookahead string w ∈ Σ ∗ , such that |w| ≤ k, at least

one condition is satisfied:
a) |REDk (q, w)| ≥ 2: reduce/reduce conflict;

b) |REDk (q, w)| ≥ 1 ∧ ∃ A → α • β ∈ q ∧ w ∈ F

IRSTk (β): shift/reduceconflict.
If one of these conditions is true, q is said to be an

inconsistent state. A grammar is LALR(k) if its

correspondent LALR(k) automaton has no

inconsistent states.A conflict is caused either by

ambiguity or lack of right context, resulting in four

possible situations. Ambiguity conflicts are the class

of conflicts caused by the use of grammar rules that

result in at least two different parsing trees for a

certain string. These conflicts cannot be solved by

increasing the value of k; in fact there isn’t a k (or k

= ∞) such that the grammar is LALR(k). Some of

these conflicts are solved by rewriting some

grammar rules in order to make it LALR(k),

according to the k used by the parser generator

(situation (i)). As an example, consider the dangling-

else conflict. It is well known that its syntax can be

expressed by a non ambiguous LALR(1) set of rules,

although is more probable that one will first write an

ambiguous specification. Some ambiguity conflicts,

on the other hand, simply cannot be removed from

the grammar without altering the language in

question (situation (ii)). These conflicts are due to

the existence of inherently ambiguous syntax

constructions. number of b’s when a conflict

involving the item B2 → b• is reported. The only

possible solution for this example is to rewrite the

grammar. For this simple case, such rewrite

definitely exists, because L is a regular language.

Nevertheless, it should be pointed out that this kind

of solution is not always possible. The mentioned

four situations exhaust all possibilities of causes of

conflicts in LALR(k) parser construction. These

situations of conflicts are also applicable to LR(k)

parser generation. One type of reduce/reduce conflict

is, however, LALR specific. It arises when

calculating LAk for reduction items in states in M0.

Such calculation can be seen as generating the LRA1

automaton and merging states with the same item

set; lookaheads of reduction items in the new state

are given by the union of the lookaheads in each

reduction item in each merged state. When

performing the merge, reduce/reduce conflicts, not

present in the LR(1) automaton, can emerge.

Specific LALR reduce/reduce conflicts occur if the

items involved in the conflict do not share the same

left context, i.e., a sentential formobtained by

concatenating each entry symbol of the states in the

4. PROPOSED METHODOLOGY

Parsing table plays very important role in LALR (1)

parsing. Its used to make parsing decision during

parsing telling parser program whether a input

symbol to be shifted onto stack or to reduce an

existing substring in stack by matching production

rule. Problem arises while there are two entries in

parsing table and it cannot be decided which entry is

right choice to make. A wrong one chosen can cause

failure of parsing further. We are showing here a(1)
case of conflicts. Suppose there are two states I2 I1

while we are using existing algorithm to make

LALR(1) parsing table than merging states I2 and

I1 will cause shift – reduce conflicts because as

wether to shift = input symbol onto stack or to

ruduce L by R in below set of LR(1) items.

Example: 1

I2: S  L. =R, $

I1 R  L., $

The Core of A Set of LR (1) Items are calculated as

below:

The core of a set of LR (1) items is the set of its first

component.

Ex: S  L. =R, $ SL.=R

R  L., $ R  L.

We will find the states (sets of LR (1) items) in a

canonical LR(1) parser with same cores. Then we

will merge them as a single state.

I1:L  id.,= L  id.,$

A new state:

I12: L  id.,=/$

have same core, merge them. We will do

this for all states of a canonical LR(1)

parser to get the states of the LALR parser.

Method that we are proposing makes some

changes in the way table is constructed.

First we see how LALR(1) is constructed

using existing method-

Om Singh Parihar et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

1. Create the canonical LR(1) collection of the

sets of LR(1) items for the given

grammar.

2. For each core present; find all sets having

that same core; replace those sets having

same cores with a single set which is their

union. C={I0,...,In}  C’={J1,...,Jm}where

m  n

3. Create the parsing tables (action and goto

tables) same as the construction of the

parsing tables of LR (1) parser.

3.1 Note that: If J=I1  ...  Ik since

I1,...,Ik have same cores
Cores of goto(I1,X),...,goto(I2,X)

must be same.

3.2 So, goto(J,X)=K where K is the union of

all sets of items having same cores as

goto(I1,X).

If we follow this approach than merging of

two states cause conflict in case of example

1 as shown above.

So we are giving here a new way to

construct LALR(1) parsing table that will

merge only those states that do not cause

conflict and all other states that are causing

conflict in merging will we left as they are.

In order to get such effect we are proposing

modified LALR (1) parsing table

construction algorithm.

5. PROPOSED METHOD FOR LALR (1)

PARSING TABLE

1. Create the canonical LR (1) collection of

the sets of LR (1) items for the given

grammar.

2. Create LR (1) parsing table.

3. Now merge states of LR(1) parsing table

having same core LR(0) items and different

look ahead symbols in DFA for LR(1) , into

a single state where all those rows don’t

have entry into location Rn Cm and Rx Cm

belong to all rows. Where R=Row and

C=column, m, n, x are positive numbers.

4. For each core present; find all sets having

that same core and does not cause multiple

entry into table replace those sets having

same cores with a single set which is their

union. C={I0,...,In}  C’={J1,...,Jm}

where m  n

5. Create the parsing tables (action and goto

tables) same as the construction of the

parsing tables of LR (1) parser.

1. If J=I1  ...  Ik since I1,...,Ik have same

cores.

Cores of goto(I1,X),...,goto(I2,X) must be

same.

2. So, goto(J,X)=K where K is the union of

all sets of items having same cores as

goto(I1,X).

6. CONCLUSION

In this paper, we presented the problem of conflict

removal in non LALR(1).After going through this

presentation my conclusion is that existing LALR(1)

parsing method up to date is very effective but it

resolves conflict after generation of LALR(1)

parsing table , as I have shown LAR(1) paring table

is made from CLR(1) parsing table so at the time of

construction of table LALR(1) from CLR(1) table if

check for multiple entries is put then resultant

LALR(1) parsing can be more efficient because it is

an attempt to solve problem before it generation at

the time it is detected.

REFERENCES

1. Journal of Universal Computer Science, Vol. 13, No. 6 (2007),

737-752 submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07

© J.UCS A Methodology for Removing LALR (k) Conflicts

Leonardo Teixeira Passos (Federal University of Minas Gerais,

Brazil leonardo@dcc.ufmg.br) Mariza A. S. Bigonha (Federal

University of Minas Gerais, Brazil mariza@dcc.ufmg.br) Roberto

S. Bigonha (Federal University of Minas Gerais, Brazil

bigonha@dcc.ufmg.br).

2. Journal of Universal Computer Science 735–752 (2007)

Teixeira Passos, L. Bigonha, M.A., Bigonha, R.: A methodology

for removing LALR(k) conflicts.

3. Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON 2006). pp. 39–53. Toronto

(2006) Thurston, A.D., Cordy, J.R.: A backtracking LR algorithm

for parsing ambiguous context-dependent languages.

4. Conference sponsored by IEEE, New York) MICKUNAS, M

D., AND SCHNEIDER, V.B. On the ability to cover LR (k)

grammars with LR(1), SLR(1), and (1, 1) bounded-context

grammars Proc of the 14th Ann Symp. on Switching and

Automata Theory, Iowa City, Oct 1973, pp. 109-121 .

5. Conference on Functional programming (ICFP’02), Bryan

Ford. Packrat parsing: simple, powerful, lazy, linear time. In

Proceedings of the seventh ACM SIGPLAN international.

mailto:leonardo@dcc.ufmg.br
mailto:mariza@dcc.ufmg.br
mailto:bigonha@dcc.ufmg.br
mailto:bigonha@dcc.ufmg.br
mailto:bigonha@dcc.ufmg.br

