WATER AUDIT: A CASE STUDY OF WATER SUPPLY SCHEME OF SHRIVARDHAN.

Amol A.Kulkarni^{#1}, Avinash A. Patil^{#2}, Balasaheb B. Patil^{*3} Department of Environmental Science & Technology, Department Of Technology, Shivaji University, Kolhapur, India

> ¹ amolkulkarni.909@gmail.com ² avipatil236@gmail.com ³ balasaheb.patil55@gmail.com

ABSTRACT- A water audit determines the amount of water lost from a water supply system and the cost of this loss to the utility. It will quantify Unaccounted for Water (UFW) and Non-Revenue Water (NRW). Water audits balance the amount produced with the amount billed and account for the remaining water (loss). Comprehensive audits can give the utility a detailed profile of the water supply system and water users, allowing easier management of resources and improved reliability. It is an important step towards water conservation and, if linked with a leak detection plan, can save the utility a significant amount of money and time.

Keywords: Unaccounted for Water (UFW); Non-Revenue Water (NRW)

I. INTRODUCTION

Water audit refers to the conducting of periodic exercises to determine water supplied into the distribution system as well as water lost and/or used within the distribution system, the water balance chart is the tool used to enhance a meaningful water audit report.

Developing a water balance is of paramount importance for the following reasons.

1. It serves as a framework for assessing a utility's water loss situation

2. Calculating the water balance

a. Reveals availability/reliability of data and level of understanding

b. Creates awareness of problems/issues

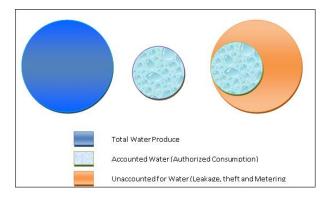
c. Gives direction of improvements

3. It also serves as a tool for communication and benchmarking

4. Above all it provides significant guidance required for purposes of prioritizing attention and investments of limited resources.

The following benefits accrue from the reduction of NRW;

1. Cleaner database and more revenues


2. More water available for consumption

3. Cost reduction – less chemicals and electricity – optimized production

4. Deferred need for investments to increase production capacity

5. Reliable demand projections

6. Optimized operation of the distribution system.

II. COMPONENTS OF WATER AUDIT

- Head Works for import of raw water
- Raw Water Gravity Main for raw water consumption and losses
- Raw Water Sump & Pump House for raw water consumption and losses
- Storage Reservoir Distribution input, water supplied to DMA and treated exported water
- Distribution system Pure water consumption, losses over distribution all over town
- Analysis of flow measurement with respect to standard water balance sheet
- Hydraulic modelling and Analysis for existing distribution system
- Proposing rehabilitation program

III. CASE STUDY OF WATER SUPPLY SCHEME OF SHRIVARDHAN

The Government of Maharashtra has undertaken "Sujal-Nirmal Abhiyan" project under which government insisted various urban local bodies to participate and such ULB improvement program has been taken up to increase serviceability of the system. Shrivardhan Municipal Council, also participated and intended to do various works in the field of water supply such as Carrying out Consumer Survey, Water Audit, Energy Audit, Providing and Installing Flow Meter, GIS Mapping, Hydraulic Modelling and Computerized Water Billing and Collection System.

The earlier studies carried for water supply improvements are reviewed and basic information is utilized for analysing existing water supply system for SMC area.

The population of Shrivardhan as per 2011 census is 15118. Population is marginally decreased than 2001 due to lot of people migrating to urban areas for work as Shrivardhan have very limited resources for earning.

Floating population is nearly 2000 persons per day in peak period and 800 persons per day during non-peak season. The average residing population is considered as 50% of total floating population and other 50% are day travellers.

Hence Total Present Population (2011) for SMS is tabulated below-

Sr.	Particulars	Peak	Non
No.		Day	Peak
			Day
1	Present Resident	15118	15118
	Population		
2	Residing Floating	1000	400
	Population		
3	Non Residing	1000	400
	Floating		
	Population		
	Total Population	17118	16918
	-		

As per CPHEEO norms, following LPCD rates are considered for above categories of population in SMC area. The total water demand is also depicted in following table –

Sr. No.	Particulars	LPCD Rate	Peak Day	Non- Peak Day
1	Present Resident Population	70	1058260	1058260
2	Residing Floating Population	70	70000	40000

3	Non	15	15000	6000
	Residing			
	Floating			
	Population			
	Total		1143260	1104260
	Demand			
	Add 10%		114326	110426
	for other			
	demands			
	Total		1257586	1214686
	Demand			
	Add 15%		221927	214356
	Losses			
	Gross		1479513	1429042
	Demand			
	Gross		1.48	1.43
	Demand in			
	MLD			

Total quantity of water supplied to Arathi and Metkarni area outside SMC boundary is given below –

Sr. No.	Particulars	Supply Hours	Quantity of water supplied in LPD
1	Domestic Consumer at Arathi	4.0	225000
	Domestic Consumer at Metkarni	18.0	165000
2	ST Workshop and Other Non Domestic Users	18.0	37000
	Total Demand	22.0	427000
	Gross Demand in MLD		0.43

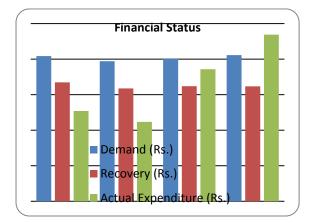
Total demand of present area served by SMC is 1.91 MLD

From the water charges bills paid to Irrigation Department, it is observed that SMC is consuming 3.6 MLD of water including demand for Arathi.

Considering the consumption of 135 LPCD after the sewerage scheme is implemented in the town, the total present gross water demand will be as follows –

Sr. No.	Particulars	LPCD Rate	Peak Day	Non Peak Deu
1	Present Resident Population	135	2040930	Day 2040930
2	Residing Floating Population	135	135000	54000

3	Non	15	15000	6000
5		15	13000	0000
	Residing			
	Floating			
	Population			
	Total		2190930	2100930
	Demand			
	Add 10%		219093	210093
	for other			
	demands			
	Total		2410023	2311023
	Demand			
	Add 15%		361503	346653
	Losses			
	Gross		2771526	2657676
	Demand			
	Gross		2.77	2.66
	Demand in			
	MLD			
	Considering	.1	instal man	1


Considering the projected population of 19063 for year 2041 and proportionate increase in floating population, gross water demand for projected year 2041 will be 3.53 MLD.

It is suggested that SMC should immediately approach to the Water Resource Department (WRD) i.e. Irrigation Department and apply for sanctioning the additional quota of 2.17 MLD from Ranvali dam.

AS the SMC is presently drawing average 3.2 MLD of water, hence it is presumed that Ranvali Dam has the capacity to serve SMC's additional demand in future as well.

WATER BUDGET Bill Demand/ Recovery/ Expenditure

Yea	Demand	Recover	Actual	Recove
r	(Rs.)	y (Rs.)	Expendit	ry (%)
			ure (Rs.)	
200	20,43,24	16,72,31	12,69,912	81.85
7-08	5/-	1/-	/-	%
200	19,70,14	15,87,00	11,17,002	80.55
8-09	0/-	9/-	/-	%
200	20,03,26	16,18,81	18,58,656	80.80
9-10	3/-	1/-	/-	%
201	20,54,84	16,16,74	23,44,174	78.68
0-11	1/-	4/-	/-	%

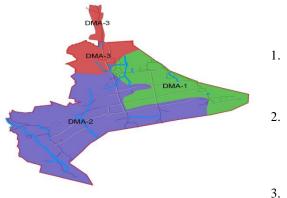
IV. WATER AUDIT

Water audit of existing system is carried out from Source to tap in SMC area. Water & Energy Audit is carried out in three stages –

- 1. Pre-monsoon
- 2. Monsoon
- 3. Post Monsoon

The total area is divided in to three water Districts / District Metering Areas (DMA)

Sr.	DMA	Tota	l Consumers	
No		Residenti	Commerci	Tota
•		al	al	1
1	Shivaji	756	9	765
	chowk,			
	Mahaveer			
	Marg to			
	Danda			
	Area			
2	Shivaji	761	9	770
	chowk,			
	Mahaveer			
	Marg to			
	Danda			
	Area			
3	Shrivardh	362	10	372
	an Bus			
	Depot to			
	Shivaji			
	Chowk			
	and			
	adjoining			
	villages.			
	Total	1879	28	1907


Table shows number of properties vis-avis number of consumers in SMC area.

Sr No	Category	No of Properti es	No. of Consume rs	Total Family Covere d by SMC Water Supply
1	Residenti al	3558	1677 + 74 SP	2500 +(74X1 0) = 3240
2	Commerc ial & Other	409	28	56
	Total	3967	1705+ 74SP	3296

Hence percentage coverage of population under SMC water supply is about 83%.

Formation of District Metering Area (DMA)

- DMA-1: Shivaji Chowk to Mahaveer Marg, Moghal Mohall, Prabhu Aali, Rafi Kidwai Marg, Danada etc.
- DMA-2: Shivaji Chowk to Tilak Road, Dhond Galli, Peshave Aali, Jeevana and Kond area etc.
- DMA-3: Shrivardhan ST Stand to Shivaji Chowk, Arathi, Metkarni etc.
- Sub DMA 2 100% Sub DMA in DMA-1 &2

Observations on the Existing Water Supply System of SMC:

1) After commissioning the first water supply scheme of Shriwardhan town in the year 1987, the maintenance of the water supply components are overlooked. Thus the supply of the town is not steady and cause limited supply efficiency. 4.

2) Water supply components such as pipes pump house and pumping machineries etc. require immediate maintenance. Since there is no preventive maintenance and schedule of the water supply components, system components are not steady and causing frequent failure.

3) Present domestic population for year 2011 is approximately 15118. The floating population for peak period is 2000 and non-peak period is 800.

4) Since there is no sewerage system in existence, LPCD rate is considered as 70 LPCD based on CPHEEO guidelines.

5) Present gross demand of SMC area considering other demands and 15% losses in transmission & distribution network is worked out to be 1.48 MLD 6) SMC is also supplying water to Arathi, Metkarni and other small areas adjoining to SMC boundary including ST Depot etc. and this demand worked out to be 0.43 MLD.

7) Total gross water demand for present year worked out to be 1.91 MLD

8) Considering the losses in the distribution network from comprehensive water audit program i.e. 46%, total water demand from source is worked out to be 3.53 MLD.

9) The sanction quota of raw water at Ranvali Dam for SMC is 1.36 MLD and SMC should apply immediately to Irrigation department to increase the quota of raw water from Ranvali Dam for future provisions

10) Presently SMC fetching 3.20 MLD of Raw water.

11) Irrigation Department is charging 3.6 MLD of consumption to SMC on flat basis with penalized rates for additional usage over 1.36 MLD

- Rate of Raw Water Rs. 1.50 / 10 KL
- Penalized Rate Rs. 3.00 / 10KL
- Actual average Consumption is about 2.9 MLD
- Additional Amount Annually paid by SMC due to additional usage and the penalty Rs. 90,000/-

12) Arathi gram panchayat has already started laying separate system for water supply and once commissioned, there quota will be deducted from SMC drawl.

13) In future when the sewerage system will be planned for SMC, water demand will increase drastically considering 135 LPCD rate as per CPHEEO guidelines. SMC should approach WRD and obtained additional quota from Ranvali dam.

14) After the site visit and subsequent discussion with SMC staff, it is observed that distribution network is serving the town for a long period. Most of distribution pipeline are of AC/PVC/GI material which are leaking. The connections to consumer are of GI fittings which are corroded and leads to further leakages. This could be the major sources of NRW.

15) SMC did not have water treatment facility to treat raw water from Ranvali Dam and hence raw water is supplied to consumer of SMC with chlorination at Arathi S&P House. Water supply through Bypass arrangement is without chlorination.

- SMC is now in process of inviting Tender for unconventional WTP as per the sanctioned scheme of MJP under Reform Works.
- The location of new WTP is identified at higher elevation near source i.e. LHS of Ranvali dam and upstream of proposed intake well.
- Water collected in proposed Intake well will be pumped to inlet of WTP and thereafter water will reach existing Arathi GSR by gravity bypassing exiting S&P house at Arathi.

16) Water tariff is based on fixed flat rate basis for residential and commercial consumers

17) Water is supplied to consumer without metering and hence control usage is not envisaged. Hence it is recommended that SMC should impose consumer metering system and tariff will be charged on volumetric basis with telescopic rates to bring control over wastage of water.

18) Revenue collection from consumer for water supply bills is average 81 % of demand.

19) Average 19 % deficit in revenue considering revenue collected and expenditure on water supply works.

- SMC should expand the peripheral areas of SMC boundary so that residents in far end and resident residing at higher elevation in Jeevana and Dhond Galli area shall be able to take connection from Municipal Council. This will help to increase the coverage up to 95 % and will aid in generating additional revenue.
- Stand post shall be discarded and group connections (5 to 6 consumer in one group) will be encouraged by offering lower tariff rate.

20) Considering newly developed areas additional storage reservoirs could be required for town.

- As per the present demand of 1.26 MLD, storage required as per CPHEEO norms is 0.42 MLD.
- Present storages in SMC area are 0.68 MLD
- If the demand increases due to implementation of sewerage scheme in near future, the total storage requirement will 0.80 MLD and hence additional storages will be required at suitable locations based on outcome of hydraulic analysis.

V. WATER BALANCE DIAGRAM

Complete Water Balance Sheet for Water Audit of SMC is presented below-

А	В	С	D	Е
Syste	Author	Billed	Billed	Revenue
m	ized	Autho	Metered	Water
Input	Consu	rized	Consump	(Total
Volu	mption	Consu	tion	billed
me	(Billed	mptio	(Includin	quantity
	Author	n	g water) MLD
MLD	ized	MLD	exported)	1327.71
2929.	Consu	1327.7	Nil	4
05	mption	14	Billed	Cum/Da
Cum/	+	Cum/	Un-	У
Day	Unbill	Day	metered	(45%)
	ed	(45%)	Consump	
	Author		tion	
	ized		1327.714	
	Consu		Cum/Day	
	mption		(45%)	
) MLD			
	1572.1	Unbill	Unbilled	Non-
	8	ed	Metered	Revenue
	Cum/	Autho	Consump	Water
	Day	rized	tion	(System
	(54%)	Consu	Nil	Input

	mptio	Unbilled	Volume
	n	Un-	- Total
	MLD	metered	Billed
	244.46	Consump	Quantity
	6	tion)
	Cum/	244.466	1601.33
	Day	Cum/Day	6
	(8%)	(8%)	Cum/Da
	Appar	Un-	У
Water	ent	authorize	(55%)
Losses	Losses	d	
(Syste	MLD	Consump	
m	183.77	tion	
Input	3	183.773	
Volum	Cum/	Cum/Day	
e –	Day	(6%)	
Author	(6%)	Metering	
ized		Inaccurac	
Consu		ies	
mption		Nil	
)	Real	Raw	
	Losses	Water	
1356.8	(Wate	Transmis	
7	r	sion	
Cum/	losses	Losses	
Day	_	240.655	
(46%))	Appar	Cum/Day	
	ent	(8%)	
	losses)	WTP	
	MLD	Losses	
	1173.0	Nil	
	97	Raw	
	Cum/	Water	
	Day	Distributi	
	(40%)	on Losses	
) ´	1116.215	
		Cum/Day	
		(38%)	

VI. SYSTEM ANALYSIS

Identify recoverable leakage in pipe line and valves.

Sr.	Component	Quantity
No.		
1	Total losses observed in the	1173.097
	Gravity feeder mains and	Cum/Day
	Distribution Network	_
	pipeline, specials and	
	valves are about 40%	
2	Daily Recoverable	586.55
	Leakages in Pipeline and	Cum/Day
	Valve 20%	-

Calculate the value of recoverable leakage.

Sr. No.	Component	Quantity
1	Annual Recoverable Leakages in Pipeline and	241090 KLD/Annum
	Valve @ 20%	TTED/T HIHAIII
2	Cost of Water loss @ Rs. 3.00 / 10 KLD (Penalized rate is considered as this is additional water exceeding approved quota)	Rs. 72327/- per Annum

Calculate the cost of recovering leakage:-

Leakages observed on the pipeline to be rectified immediately by department to avoid water loss. Replacing of leaky pipelines and valves are necessary but proposed in long term investment plan as the associated cost is more when compared with revenue loss by recoverable leakage.

The recoverable leakages should be given importance for water conservation because these losses reduce the storage capacity of Dam which causes water shortage during summer season.

Calculate the cost of Leak detection:-

Since the cost associated with recoverable water loss is less, leak detection using state-of-art instruments is not economically viable.

VII. IMPROVEMENT TO EXISTING WATER SUPPLY SYSTEM

As per the observations and recommendation from Comprehensive Water and Energy Audit program, following works are envisaged for improving service levels to the consumers of SMC.

The improvement works are sliced in to two phases –

- 1. Immediate Improvements
- 2. Long Term Improvements

Following table indicates the works to be carried out in two phases –

Sr. No	System Componen	Proposed Rehabilitation by WCS	
•	ts	Immediate	Long Term
		Improveme	Improvement
		nts	S
1	Head	Arrangement	Construction
	Works	for	of new Intake
		submerged	Channel and
		inlet by	Intake Well
		fixing 90	
		deg. Bend	

2Raw Water Gravity Main from Intake to Arathi S&P House3Arathi Summer from Arathi	and fix jali /mesh at inlet opening to avoid entry of floating matter in to the pipe line Observe the pipeline regularly in Khajan Land and remove the leakages immediately as this portion is more prone to leakage due to corrosion of pipe in this section.	Proposed to Replace old Cast Iron pipe with 250mm dia DI, K-7 pipe at the leaky and damaged pipe portion i.e. 3.5 Kms out of total 4.5 Kms pipe length
Sump & Pump House	cracks, openings in Sump Wall to avoid leakage / seepage.	plaster for sump to avoid any seepage or leakages. Minor repairs and painting works to Pump House
4 Water Treatment	Proposed to construct Horizontal Filters on the periphery of sump 1.5 m wide for removal of turbidity / suspended solids etc.	MJP has given approval to construct new WTP in reform works and SMC will be constructing new WTP (unconvention al) near source at higher elevation so that water after treatment will reach to Arathi GSR by gravity. This will eliminate the existing S&P house and hence SMC to take call whether to execute the work proposed by WCS or not.
5 Raw water	Nil	Nil

	rising main		1
6	Pumps and Motors and other Electrical arrangemen ts at Arathi, Jeevana & Dhond Galli Sump	Maintain the regular inflow to sump and observed the water levels to avoid dry run of pumps	Modification Suggested as per outcome of Energy Audit
8	Distributio n Network	Distribution hours in Danda area to be increased by one hour with additional pumping in to Arathi GSR	Proposed to replace AC and GI pipes (60mm to 200mm dia) with HDPE pipelines of equivalent diameters.
9	Bulk Flow Meters	Nil	Proposed to install Bulk Flow Meters in Transmission & Distribution network for periodic water audit
10	Consumer Meters and HSC	Discard free stand post and provide group connections to the consumers BPL at Low tariff instead of free to reduce NRW	Proposed to install meters to all consumers and discard free public stand posts and charge consumer on Volumetric basis with telescopic tariff.

VIII. ANALYSIS OF AUDIT RESULT

- Identify recoverable losses
- Estimate the value of recoverable losses
- Estimate the cost of recovering losses and corrective measures
- Prepare the cost benefit Analysis
- Prepare Action Plan for implementation
- Monitor the result
- Update the audit
- Update the master plan

And it's a continues process.

IX. BENEFIT OF WATER AUDIT

- Reduced water losses
- Financial Improvement
- Increased knowledge of distribution system
- More efficient use of existing supply
- Safe guarding public health to safety
- Improved public relation
- Reduced legal liability
- Provides the yard stick for performance of O & M team

REFRENCES:

1) AWWA-American Water works Association Manual.

2) Detail Project Report on Water Audit of Ahmadpur Municipal Corporation, Management under Sujal Nirmal Abhiyan, State Government of Maharashtra.

3) Detail Project Report on Water Audit of Shreevardhan Municipal Corporation, Management under Sujal Nirmal Abhiyan, State Government of Maharashtra.

4) <u>http://mjp.mah.nic.in</u>

5) IWA- International Water works Association Manual.

6) IWWA- Indian Water works Association Manual.

7) Manual on Operation and Maintenance of Water Supply System Central Public Health and Environment Engineering Organisation (CPHEEO)

8) Manual on Water Supply and Treatment Central Public Health and Environment Engineering Organisation (CPHEEO) under Ministry of Environment & Forests Government of India

9) Ministry of Environment & Forests Government of India

10) Ministry 0f Urban Development Govt.of India www.moud.com

11) Sujal Nirmal Abhiyan GR of water supply -19, 2009 For Water Audit and Leak Detection, Govt. of Maharashtra.

12) Water supply Engineering by Santosh Garg.