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Abstract----Hadoop is an open-source framework that 
supports the processing of massive volume of datasets in 

a distributed environment. Big data and hadoop are the 

catch-phrases for describing the storage and processing 

of huge amount of data, where zeta bytes of 

unstructured data and updates are constantly arriving, 
that cannot be mined efficiently by the traditional tools 

and methods.   MapReduce is the first MapReduce-

based solution that efficiently supports incremental 

iterative computation, which is widely used in data 

mining applications.   MapReduce utilizes key-value 

pair incremental processing rather than task level re-

computation. In this paper, an extension to MapReduce 

using in-memory for mining big data has been 

proposed. Compared with the work of   MapReduce , 

MapReduce using in-memory performs key-value pair 

level processing in map phase based on the mining 

results of iterative algorithms, cache the mapped data in 
the buffer that reduces the I/O workload of the reducer 

phase. Mapreduce using cache is enhanced in hadoop 

environment and uses the hadoop cache as a buffer to 

store the intermediate data. The evaluation of 

MapReduce task for the mobile datasets using the 
iterative algorithm and cache memory has been 

retrieved fast and executed in time. 

Index terms: MapReduce, bigdata, incremental 

processing, in-memory. 

 

I. INTRODUCTION 

A. Big Data  

Big data is an evolving term that describes any 

voluminous amount of structured, semi-structured 

and unstructured data in areas includ ing internet 

search, social network, finance, business informat ics, 

health care, environment and education. Mining of 

such big data are become popular in order to gain 

better performance and quality services .  Big Data as 

the name describes a large data sets that is growing 

beyond the ability to manage and analysis using with 

the traditional data processing tools. Big data 

represents large and incremental volume of 

informat ion that is mostly untapped by existing data 

warehousing systems and other analytical 

applications. These data is being gathered from 

different sources like web search, mobile devices, 

software logs, cameras, etc. As of 2012 2.5 Exabyte 

data created by every day and the size of the growth 

gets doubled by every next year. The main  

characteristics of BigData are Volume, Variety, 

Velocity, Variab ility, Veracity and Complexity. This 

describes the data is big in Volume, has mult iple 

categories, speed of gathering data to meet the 

requirement, consistency/quality of the data and the 

complexity  in  collecting, processing the data to get 

the required in formation. There are much architecture 

used in BigData and Google introduced a new 

process called „MapReduce‟, which allocates the 

tasks parallel to the nodes and collect, which is a very  

successful framework. Later this framework was 

adopted by Apache open source project called 

Hadoop. Larger organizations interested in capturing 

the data to add significant values like the business. 

Big Data is mostly used in Retail, Banking, 

Government, Real estate, Science and research 

sectors. This helps in decision making, cost/time 

reduction, market analysis etc. 

B.  Hadoop  

It is an open source platform for storage and 

processing of diverse data types that enables data 

driver enterprises to rapidly derive the complete 

value from all their data.The original creators of 

Hadoop are Doug cutting (used to be at Yahoo! now 

at Cloudera) and Mike Cafarella (now teaching at  the 

University of Michigan in Ann Arbor). Doug and 

Mike were build ing a project called “Nutch” with the 

goal of creating a large Web index. They saw the 

MapReduce and GFS papers from Google, which 

were obviously super relevant to the problem Nutch 

and were trying to solve. They integrated the 

concepts from MapReduce and GFS into Nutch; then 

later these two components were pulled out to form 

the genesis of the Hadoop project. The name 

“Hadoop” itself comes from Doug‟s son, he just 
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made the word up for a yellow p lush elephant toy 

that he has. Yahoo! hired Doug and invested 

significant resources into growing the Hadoop 

project, in itially to store and index the Web for the 

purpose of Yahoo! Search. That said, the technology 

quickly mushroomed throughout the whole company 

as it proved to be a big hammer that can solve many 

problems. In the recent years, lots of frameworks [1], 

[2], [3], [4], [5] have been developed for big data 

analytics. From those frameworks, MapReduce [1], is 

the most widely used framework for the simplicity, 

generality and maturity with open source 

implementation such as hadoop. In this paper, we 

improve the efficiency of MapReduce using the 

cache memory. 

Big data is data, when grows as the technology 

advances constantly. As new data and updates are 

constantly arriv ing, the mining of those data are 

complex by  the traditional tools and methods. 

Refresh periodically to store the mining results up-to-

date. E.g., Page Rank algorithm [6] estimates the 

ranking scores of the web pages based on the search 

of the web contents. For every search, web graph 

structures are constantly evolved. The results of page 

rank become stale and it  decreases the quality of the 

web content search. Therefore, it is important to 

refresh the Page Rank estimation in a regular interval. 

Incremental processing is an efficient approach to 

refresh those mining results. If the size of the input is 

large, the processing of those big data is very 

expensive. 

 

C. MapReduce Overview 

 

 
 

Fig 1: MapReduce workflow 

 

The MapReduce framework has two parts: A 

function called Map, which takes a kv-pair <k1,v1> 

as input and computes zero or more intermediate kv-

pairs <k2,v2>s. Then all <K2,v2>s are grouped by 

K2. A  function called   Reduce, which takes a K2 and 

list of {v2} as input and computes the reduced final 

output kv-pairs <k3, v3>s explains in fig 1. A 

MapReduce is heart of Hadoop, it usually reads the 

input data of the MapReduce function and computes 

the final results to the HDFS (Hadoop Distributed 

File System), which div ides a file into equal-sized of 

64MB blocks in a cluster environment. 

 

D. Distributed Cache 

 

Distributed Cache is a facility provided by the Map-

Reduce framework to cache files (text, archives, jars 

etc.) needed by applications. Applications specify the 

files, via urls (hdfs:// or http://) to be cached via the  
jobconf. The Distributed Cache assumes that the files 

specified via urls are already present on the File 

System at the path specified by the url and are 

accessible by every machine in the cluster. The 

framework will copy the necessary files on to the 

slave node before any tasks for the job are executed 

on that node. Its efficiency stems from the fact that 

the files are only copied once per job and the ability 

to cache archives which are un-archived on the 

slaves. Distributed Cache can be used to distribute 

simple, read-only data/text files and/or more complex 

types such as archives, jars etc. Archives (zip, tar and 

tgz/tar.gz files) are un-arch ived at the slave nodes. 

Jars may be optionally added to the classpath of the 

tasks, a rudimentary software distribution 

mechanis m. Files have execution permissions. In 

older version of Hadoop Map/Reduce users could 

optionally ask for symlinks to be created in the 

working directory of the child task. In the current 

version symlinks are always created. If the URL does 

not have a fragment the name of the file or directory 

will be used. If mult iple files or directories map to the 

same link name, the last one added, will be used. All 

others will not even be downloaded. Distributed 

Cache tracks modification timestamps of the cache 

files. Clearly the cache files should not be modified 

by the application or externally while the job is 

executing. 

 

 

II. RELATED WORK 

Iterative processing. A number of distributed 

frameworks have recently emerged for big data 

processing [2], [4], [5]. We discuss the frameworks 

that improve MapReduce. HaLoop [9], a modified 

version of Hadoop, improves the efficiency of 

iterative computation by making the task scheduler 

loop aware and by employing caching mechanis ms. 

iMapReduce [10] supports iterative processing by 

directly passing the Reduce outputs to Map and by 

distinguishing variant state data from the static data. 

iMapReduce allows users to specify the iterative 

operations with map and reduce functions, while 

supporting the iterative processing automatically  

without the need of users‟ involvement. More 

importantly, iMapReduce significantly improves the 

performance of iterative algorithms by reducing the 

overhead of creating a new task in every iteration, 

eliminating the shuffling of the static data in the 

shuffle stage of MapReduce, and allowing 

Journal of Computing Technologies (2278 – 3814) / # 89 / Volume 5 Issue 3

   © 2016 JCT. All Rights Reserved                                                                              89



asynchronous execution of each iteration, i.e., an 

iteration can start before all tasks of a previous 

iteration have finished.  i2MapReduce[11] improves 

upon these previous proposals by supporting an 

efficient general purpose iterative model. Pregel [3] 

follows the Bulk Synchronous Processing 

(BSP)model. The computation is broken down into a 

sequence of super steps. In each super step,a 

Compute function is invoked on each vertex. It  

communicates with other vertices by sending and 

receiving messages and performs computation for the 

current vertex.This model can efficiently support a 

large number o f iterat ive graph algorithms. 

Compared to i2MapReduce, the BSP model in Pregel 

is quite different from the MapReduce programming 

paradigm. It would be an interesting future work to 

exploit similar ideas in this paper to support 

incremental processing in Pregel-like systems. 

Incremental processing for one-step application. 

Besides Incoop [7], several recent studies aim at 

supporting incremental processing for one-step 

applications. In contrast, i2MapReduce exp loits a 

fine-grain kv-pair level re-computation that is more 

advantageous. Incremental processing for iterative 

application. In comparison, we extend the widely  

used MapReduce model for incremental iterat ive 

computation. Existing Map- Reduce programs can be 

slightly changed to run on mapreduce using cache for 

incremental p rocessing. Incoop detects changes to the 

inputs and enables the automatic update of the 

outputs by employing an efficient, fine-grained result 

reuse mechanism. To achieve efficiency without 

sacrificing transparency, they  adopt recent advances 

in the area of programming languages to identify 

systematically the shortcomings of task level 

memorizat ion approaches, and address them using 

several novel techniques such as a storage system to 

store the input of consecutive runs, a contraction 

phase that make the incremental computation of the 

reduce tasks more efficient, and a scheduling 
algorithm for Hadoop that is aware of the location of 

previously computed results.  

 

 III. PROPOSED SYSTEM 

A. Problem Statement 

We consider the MapReduce approach in big data 

processing, where the data sets are stored in the 

cluster environment. MapReduce approach is used 

for mining big data. In optimized MapReduce using 

cache for big data analytics, it extracts the URL from 

online dynamic websites and it converts it into the 

data. In the Map phase, it Map the data based on the 

<key,value> pair and store it  in cache. The cached 

data are partitioned and then combine in this phase. 

In the reduce phase, the output data from map phase 

are merged and sorted and then given as input to the 

reducer to get an optimized output data. MapReduce 

based on cache reduces the I/O workload in the 

reduce function. 

 

B. Proposed Methodology 

 
Fig 2: Architecture diagram 

 

Mapreduce is the framework for the processing of big 

data; we propose an extension to i2mapreduce based 

on the in-memory  concept. First of all, mine the URL 

of the mobile datasets from the dynamic websites 

using the URL extractor. After the extraction, the 

URL are sent to the URL splitter, it splits the URL 

and converts it into content based on the annotations. 

The splitted data are mapped with the key-value pair 

and stores it in the defined cache memory. The 

cached items, (i.e) the intermediate data from 

multip le maps are managed by the cache manager. 

Then the cached data are partitioned and combined 

based on the key-value pair, merges the data based on 

the partition involved in the multip le map phase. 

Finally the cached intermediate data are sent to the 

reduce phase, the process reduces the i/o workload of 

the reducer phase. The reducer decreases the size of 

the data based on the intermediate key. The 

informat ion needed by the user is extracted from the 

dynamic mobile datasets by the mapreduce process. 

The above process is clearly illustrated in the fig 2. 
 

III CACHE DESCRIPTION 

Input: First the input data are split into fixed number 

of pieces and then they are feed to different workers 

(data nodes) in the mapreduce environment. Records 

are individual data items. Each worker process the 

input file as per the user program. 

 

Map phase: In this phase, each input split is fed to 

the mapper who has the function map (). This map () 

has the logic on how to process the input data. For 
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example, map () is containing the logic to count the 

occurrence of each word and each occurrence is 

captured and arranged as (Key, value) pairs. After 

processing the intermediate results are stored in the 

data node‟s hard disk.  

 

 
Fig 3:  Data flow in hadoop system 

 

Cache management phase: Cache manager works 

as a centralized system. All the unique input and 

output data performed by clients are feed  in  to the 

cache manager. The data in cache is stored as a log 

which contains the input and the place where the 

output is availab le. Each client checks the cache 

before it  starts the functioning. If the cache contains 

that task then the client machine can easily retrieve 

informat ion from it, else the cache accept data from 

the client. Cache prevents the occurrence of repeated 

tasks. Thus it decreases the Processing time of 

system. 

 

Cache request and reply protocol: We use cache 

request and reply protocol to get the results that are 

stored in data nodes. Before processing the splits, the 

data node sends the request to Cache Manager. All 

the unique input and output data performed by clients 

are feed  to the cache manager. The data is stored as a 

log in cache which contains the input and the place 

where the output is available. Each client checks the 

cache before it starts the functioning. If the cache 

contains that task then the client machine can easily  

retrieve information from it, else the cache accept 

task from the client. If data is already processed, the 

Cache Manager sends the positive reply to the data 

node. Otherwise send the negative reply. If negative 

reply obtained, the data node do the process on the 

split file . If positive reply obtained, the data node 

need not process the splits. So, no need to process the 

repeated data. Cache Manager ensures the repeated 

input split files need not process more than one time. 

Finally all the intermediate files are reduced by data 

node and the final result is stored in Name node. 

Reduce phase: In this step, for each unique key, the 

framework calls the application's Reduce () function. 

The Reduce can iterate through the values that are 

associated with that key and produce zero  or more 

outputs. In the word count example, the input value is 

taken by reduce function, sums them and generates a 

single output of the word  and the final sum. The 

output of the Reduce is writ ing to the stable storage, 

usually a distributed file system. 

 

 

 
Fig 4: Data flow in proposed System 

 

Steps involved in proposed system 

1. Preprocessing File - In file  preprocessing stop 

words are removed and stemming is performed  

so that proper collection of words on which 

operations are performed will be retained. 

 

2. File Vector- When collection of words activity 

ends in preprocessing, it is very important to 

evaluate how important a word is to a document 

in a collect ion or corpus. The significance 

increases equivalently to the number of t imes a 

word appears in the document but is offset by the 

frequency of the word in the corpus. Tf-idf 

(Term Frequencies Inverse Document 

Frequencies) algorithm is a statistical 

measurement weight of about the importance of 

word in a document often used in search engine, 

web data mining, text  similarity computation and 

other applications. So file vector manages above 

details.  

3. Create Signature- To find similar file  it  should be 

compared with existing files available among the 

millions of files to make comparison process 

faster. To create signature bit vector is used and 

initialized to zero first then hashed with file  

vector so that decision will be taken regarding 

whether existing file  to be incremented or 

decremented.  
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4.  Use Locality sensitive hashing to find nearest 

neighbor- In  large clustering environment to 

compare file signature; locality sensitive hashing 

technique is used to ensure that only nearest 

neighbor need to be checked to place file [8].  

5. Store file with related files - Name Node 

maintains subclustertable which store 

subclusterid and file placed on that cluster and if 

subclusterid is not found then new subcluster 

will be created.  

 

The various data structures implemented are locality 

sensitive hashing function, subclustering and storing 

mapping information, cachetable, storing 

intermediate result in the form of either array of 

structure or linked list or object of classes. 

  

V. EXPERIMENTAL RESULTS 

There are several steps for installing and configuring 

Hadoop. First install the fo llowing software, and then 

configure hadoop. 

 VMware Player 12 

 Create new virtual machine and install ubuntu OS 

 Install Java SE 7 

 Install Eclipse Juno Release 1.0 

 Install Apache Hadoop 2.0. 

 

 
Fig-5. Hadoop Window. 

 

Below is the Hadoop console output, this actually 

splits the tasks into several records and allocate it to 

the available data nodes. This console output will 

update the status of Map () and Reduce () and the 

task completion status. 

 

 
Fig-6. Hadoop console 

 

In the experimental results, the existing method such 

as imapreduce and i2mapreduce with the proposed 

method mapreduce using cache are compared with 

the computation time in the graph shown in fig4. 

 

 
 

Fig 7: runtime of individual stages 

 

This graph shows comparative based on the retrieval 

of data in their corresponding computation time. 

Based on the comparison mapreduce using the cache 

increases the efficiency and retrieve the abundant 

informat ion thrown away after the map phase in  the 

mapreduce framework. It  takes less amount of time 

for the big data processing. 

 

VI. PERFORMANCE EVALUATION 

Overall performance evaluation of the mapreduce 

using cache is shown in the fig 5. Mapreduce using 

cache memory increases the performance in  each 

phase such as map, shuffle, and sort and reduce. 

Performance is based on the time to complete the 

map and reduce task. It takes less amount of time to 

complete the job compared with imapreduce and 

i2mapreduce. 
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Fig 8: performance evaluation graph. 

 

VIII. CONCLUSION 

We have described mapreduce using cache in 

hadoop, a mapreduce framework for big data 

processing. Mapreduce using cache reduces workload 

and increases the efficiency based on the individual 

phases and it reduces the runtime in each phases of 

mapreduce framework. Hadoop framework has 

distributed cache to do mapreduce jobs in order to 

increase the efficiency and get the reduced output in 

optimized time. 
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