
Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
61

Android for Non-Mobile Device

 Ms Kalpana Saini. Mr. Noor Mohammed. Mr. Swapnesh Taterh

 shelly_saini18@yahoo.com S.noor.mohammed@gmail.com swapnesh_t@hotmail.com

Shekhawati Engineering College, Dundlod, Rajasthan, India

Abstract—This paper is an effort to represent Android

as a powerful software stack that can be used in non-

mobile platforms. Android is a software platform on

mobile devices by Open Handset Alliance (Google). It

includes an operating system based over Linux,

middleware and key applications such as email client,

calendar, maps, browser, and contacts. Besides mobile

phones, we are surrounded by number of digital gadgets

like set-top boxes e-book readers, net books, digital

photo frames etc. that require internet for content

transfer like traffic, photos, map, music, videos, news

etc. As many of these devices are portable, low power

consumption, small form factor, intuitive UI, larger

displays and time-to-market become major

differentiators. Simplicity and user-friendliness are the

keywords for these gadgets. Android presents a

compelling value proposition in bringing internet

connectivity and a broad range of applications to

consumer devices. It helps device manufacturers to

build innovative products faster. Since Android was

designed for low CPU usage and memory constrained

mobile phones, it is well suited for consumer devices.

The Android application framework and SDK now

extend beyond the handset assumptions for which it

was initially developed. This paper evaluates one of the

key feature requirement in of high end consumer

devices i.e. display capabilities of android. A proof of

concept is developed to support high resolutions on

devices having larger screens than mobile phones.

Keywords: Linux Kernel, Android, open-source,

Dalvik, OMAP3EVM

 1. Hardware and Software Specifications and Android

Porting

This topic covers hardware and software setup to

evaluate android for non-mobile devices. It also discuss

about hardware booting and android porting steps on

the OMAP3EVM hardware.

1.1 Hardware Details

The hardware board chosen to display android

capabilities is Texas Instrument’s OMAP3EVM. This

platform is based on the ARM® Cortex™-A8 core.

The OMAP™ 3 architecture is designed to provide

best-in-class video, image, and graphics processing

sufficient to support the following:

EVM

 MAIN

BOARD

POWER

MODULE

(TWL4030)
Board to board

Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
62

 Figure 1.1 System Block Diagram OMAP35x EVM

* Streaming video

*2D/3D mobile gaming

* Video conferencing

* High-resolution still image Applications:

* Portable Navigation Devices

* Portable Media Player

* Ultra Mobile Devices

* Advanced Portable Consumer Electronics

* Gaming

1.2 EVM Hardware Setup

This section explains the process of setting up the EVM

hardware for the purpose of running android. The

information is the same as in the supplied Setup Guide.

1.3Main Board SW4

The main board’s SW4 DIP switch controls the boot

mode of OMAP3 processor (Figure6). The default

setting shown above will try to boot from UART3. If no

response is seen in a short time (< 1 S) the processor

will attempt to boot from the attached flash

memory.Consult the Hardware User’s Guide for details

and for other settings. Please ensure to match the

numbers in the diagram to the numbers on the DIP

switch as the orientation of the switch may not be what

will expect.

1.4 Setup Terminal Program

A serial port terminal program should be used to

communicate with the EVM’s serial port console. For

Windows users HyperTerminal or TeraTerm are

recommended. For Linux users Minicom is

recommended. In any case, the serial modem settings

are the same:

Booting Introduction

Data bits: 8

Parity: None

Stop bits: 1

Flow control: none

The OMAP processor follows a 2 stage boot process.

The first stage is loaded into the internal static ram by

the ROM code. Because the internal static ram is very

small (64k), the first stage loader is needed to initialize

memory and enough of the peripheral devices to access

and load the second stage loader into main memory. It

is the job of the second stage loader to initialize the

remaining hardware and prepare the system for kernel

boot

2 SD Card Boot

Assuming there was no answer from the host during

serial boot, the ROM looks for an SD Card on the first

MMC controller. If a card is found, the ROM then

looks for the first FAT32 partition within the partition

table. Once the partition is found, the root directory is

scanned for a special signed file called "MLO".

Assuming all is well with the file, it is transferred into

the internal sram and control is passed to it. The SD

Card x-loader looks for a FAT32 partition on the first

MMC controller and scans the top level directory for a

file named "u-boot.bin". It then transfers the file into

OMAP

PROCESSOR

MODULE(OM

AP 3503 POP) Board to board

Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
63

main memory and transfers control to it. Since putting a

Linux file system on a FAT32 partition is problematic,

it is recommended to create 2 partitions. The first

partition is boot partition between 64-128 Megabytes

and the second partition is a Linux partition consuming

the rest of the card.

Fdisk drive and print partition information fdisk

/dev/sdc

Command (m for help): p

Disk /dev/sdc: 1018 MB, 1018691584 bytes<more>...

Look for the size in bytes of the device and calculate

the number of cylinders, dropping factions, if we have

255 heads and 63 sectors. new_cylinders = Size /

8225280 (for this example we will have 993001472 /

8225280 which equals 120.725 or 120 cylinders)

Since we are changing the underlying geometry of the

disk, we must clear the partition table before doing it.

So delete all partitions using the fdisk 'd' command -

yes, all data on the card are lost. Once that is done, we

can set the new geometry in expert mode

We will set the # of heads to 255, # of sectors to 63, and

of cylinders to new cylinders.

To delete partition use fdisk /dev/sdb1

Command (m for help):d

Even the gparted tool can be used to delete the existing

patition on the SD-card.

Command (m for help): x

Expert command (m for help): h

Number of heads (1-256, default 30): 255

Expert command (m for help): s

Number of sectors (1-63, default 29): 63

Warning: setting sector offset for DOS compatibility

Expert command (m for help): c

Number of cylinders (1-1048576, default 2286): 120

Now we return to the main menu and create our 2

partitions as needed - 1 boot partition of 64Meg and the

rest a linux partition.

Expert command (m for help): r

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p Partition number (1-4): 1

First cylinder (1-123, default 1):

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-123,

default 123): +64M

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p Partition number (1-4): 2

First cylinder (10-123, default 10):

Using default value 10

Last cylinder or +size or +sizeM or +sizeK (10-123,

default 123):

Using default value 123

Set the partition type of the first partition to FAT32 and

make it active.

Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): c

Changed system type of partition 1 to c (W95 FAT32

(LBA))

Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 83

Changed system type of partition 2 to 83 +LINUX

Command (m for help): a

Partition number (1-4): 1

You have to format 1st partition with vfat32 file

system. You have to format 2nd partition with EXT3

LINUX file system.

The partition table should look something like the

following. Notice the heads, sectors, and cylinders.

Make sure partition 1 is active and FAT32. If it looks

good - write the new partition information out.

Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
64

Command (m for help): pDisk /dev/sdc: 993 MB,

993001472 bytes 255 heads, 63 sectors/track, 120

cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/sdc1 * 1 9 72261 c W95 FAT32 (LBA)

/dev/sdc2 10 120 891607+ 83 Linux

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS

6.x partitions, please see the fdisk manual page for

additional information.

Syncing disks.

Device Boot Start End Blocks Id System

/dev/sdc1 * 1 9 72261 c W95 FAT32 (LBA)

/dev/sdc2 10 120 891607+ 83 Linux

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS

6.x partitions, please see the fdisk manual page for

additional information.

Syncing disks. Formating the partitions

Format the filesystems on the partitions mkfs.vfat -F 32

-n boot /dev/sdc1 mkfs.ext3 /dev/sdc2

use tune2fs -c 100 /dev/sdc2

/* to increase the maximum mount count */

Downloading the the OMAP Android Source :

This repository contains the following:

Android Source

Omap kernel source for the android Omap bootloaders

source.(i.e, x-loader and u-boot source).

3 Proof of concept

This concept describes practical activity carried out by

me to demonstrate android capabilities to be run on

high end consumer devices requiring high resolution

display3

3.1 Problem Statement

Android based devices, for the "goldfish" platform, has

limits on the size of screens. Out of the box (actually

the SDK) the largest screen support is around

800x600.By making few modifications in the android

framework, we can emulate screen sizes larger than

the800x600.

 3.2 High resolution support: Android Native Libraries

Android software stack has native libraries placed over

the linux kernel. These are set of C/C++ libraries used

by components of the Android system. These libraries

are exposed to developers through the Android

application framework. Graphics management in

android is done by Surface Manager also termed as

Surface flinger. Surface flinger provides system-wide

surface ―composer‖ coming from different applications

and handles all surface rendering to frame buffer

device.

Surface flinger has ability to combine 2D and 3D

surfaces and surfaces from multiple applications.

3.3 Graphics Management

Surface flinger has a Surface Heap Manager. Every

client has a Memory Dealer, as returned by Surface

Heap Manager .Every surface of a client also has

dealer(s), from client or GPU. A dealer consists of a

heap and an allocator. A heap represents a sharable big

chunk of memory. And an allocator is an algorithm that

returns heap chunks. Small chunks of memory from the

heap are returned .So the real processing flow looks like

Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
65

A client asks for a new surface, create Surface .create

Surface calls create Normal Surface Locked A layer is

created and set Buffers is called to allocate buffers.

Two dealers are created from client, one for front

buffers and one for back buffer. Two Layer Bitmaps are

created, initialized with the two dealers. Heaps of

dealers along with info about the layer are returned.

4. Results

After passing different parameters for different

resolution, we found a set of resolutions being

supported by android middleware. An analysis results

obtained are presented in gives all the consolidated

results obtained for different resolution Parameters

5. Conclusions

Definitely, Android stands an excellent chance of

succeeding in the consumer electronic device market.

Android is enabling a full internet experience on a

broad range of consumer devices such as DTVs, set-top

boxes, VoIP solutions, mobile internet devices (MIDs),

digital picture frames, automotive infotainment, of a

mobile devices that requires higher solution support.

 6 References

 [1] Shih-Hau Fang” Developing a mobile phone-based

fall detection system on Android platform ‖ Computing,

Communications and Applications Conference

(ComComAp), 2012, 11-13 Jan. 2012

[2] Amalfitano ―A GUI Crawling-Based Technique for

Android Mobile Application Testing Software‖ Testing,

Verification and Validation Workshops (ICSTW), 2011

IEEE Fourth International Conference on

 21-25 March 2011

[3] Erturk, E.‖ A case study in open source software

security and privacy: Android adware ” Internet

Security (WorldCIS), 2012 World Congress: 10-12

June 2012

[4] Ahmed Darwish, Image Segmentation for the

Purpose Of Object-Based Classification,, 2003 IEEE,pp

2039-2041

[5] X. Wang, Z. Li, J. Y. Choi, and N. Li. PRECIP:

Practical and Retrofittable Confidential Information

Protection Against Spyware Surveillance. In

Proceedings of the 16
th
 Network and Distributed System

Security Symposium, NDSS ’08, February 2008

[6] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A.

Kapadia, and X. Wang. Soundcomber: A Stealthy and

Context-Aware Sound Trojan for Smartphones. In

Proceedings of the 18th Annual Network and

Distributed System Security Symposium, NDSS ’11,

February 2011

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M.

Winandy. Privilege Escalation Attacks on Android. In

Proceedings of the 3rd Information Security

Conference, October 2010.

[8] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,

F. Piessens, I. Siahaan, and D. Vanoverberghe.

Security-by contract on the .NET platform. Information

Security Technical Report, 13:25–32, January 2008.

Kalpana Saini et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
66

[9] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh,

―Taming Information-Stealing Smartphone

Applications (on Android),‖ in Proceeding of the 4th

International Conference on Trust and Trustworthy

Computing, 2011.

[10] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.

Wetherall, ―These Aren’t the Droids You’re Looking

For: Retrofitting Android to Protect Data from

Imperious Applications,‖ in Proceedings of the 18th

ACM Conference on Computer and Communications

Security, 2011.

[12] M. Ongtang, S. McLaughlin, W. Enck, and P.

McDaniel, ―Semantically Rich Application-Centric

Security in Android,‖ in Proceedings of the 25th

Annual Computer Security Applications Conference.

[13] W. Enck, M. Ongtang, and P. McDaniel, ―On

Lightweight Mobile Phone Application Certification,‖

in Proceedings of the 16th ACM Conference on

Computer and Communications Security, 2009.

[14] M. Lange, S. Liebergeld, A. Lackorzynski, A.

Warg, and M. Peter, ―L4Android: A Generic Operating

System Framework for Secure Smartphones,‖ in

Proceedings of the 1
st
 Workshop on Security and

Privacy in Smartphones and Mobile Devices, 2011.

[15] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J.

Nieh, ―Cells: A Virtual Mobile Smartphone

Architecture,‖ in Proceedings of the 23rd ACM

Symposium on Operating Systems Principles, 2011.

[17] A. Porter Felt, M. Finifter, E. Chin, S. Hanna, and

D. Wagner, ―A Survey of Mobile Malware In The

Wild,‖ in Proceedings of the 1st Workshop on Security

and Privacy in Smartphone and Mobile Devices, 2011.

[18] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S.

Uellenbeck, and C. Wolf, ―Mobile Security Catching

Up? Revealing the Nuts and Bolts of the Security of

Mobile Devices,‖ in Proceedings of the 32nd IEEE

Symposium on Security and Privacy, 2011

[19] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, ―Hey,

You, Get off of My Market: Detecting Malicious Apps

in Official and Alternative Android Markets,‖ in

Proceedings of the 19th Annual Symposium on Network

and Distributed System Security, 2012.

[20] W. Zhou, Y. Zhou, X. Jiang, and P. Ning,

―DroidMOSS: Detecting Repackaged Smartphone

Applications in Third- Party Android Marketplaces,‖ in

Proceedings of the 2nd ACM Conference on Data and

Application Security and Privacy, 2012

.

[21] W. Enck, D. Octeau, P. McDaniel, and S.

Chaudhuri, ―A Study of Android Application Security,‖

in Proceedings of the 20th USENIX Security

Symposium, 2011.

