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Abstract-- In this paper we analysis the two approach: the first 

approach is a novel set of rotated haar-like features is introduced. 

These novel features significantly enrich the simple features  and 

can also be calculated efficiently. With these new rotated features 

our sample face detector shows off on average a 10% lower false 

alarm rate at a given hit rate. The second approach is  a through 

analysis of different boosting algorithms (namely Discrete, Real 

and Gentle Adaboost) and weak classifiers on the detection 

performance and computational complexity. 

  

I. INTRODUCTION 

 In this paper we extends object detection framework in two 

important approach: Firstly, the basic and over-complete set of 

haar-like features is extended by an efficient set of 45° rotated 

features, which add additional domain-knowledge to the 

learning framework and which is otherwise hard to learn. These 

novel features can be computed rapidly at all scales in constant 

time. Secondly, we empirically show that Gentle Adaboost 

outperforms with respect to object detection accuracy and 

computational complexity Discrete and Real Adaboost.  

II. FEATURES 

Let us assume that the basic unit for testing for the presence of 

an object is a window of pixels. A rectangle is specified by the 

tuple r = (x, y, w, h, α) with 0 ≤ x, x + w ≤ W 0 ≤ y, y + h ≤ 

H x, y ≥ 0 w, h > 0 α ∈ {0°, 45°} , and its pixel sum is 

denoted by . Two examples of such rectangles are given in 

Figure 1. Our raw feature set is then the set of all possible 

features of the form 

 

where the weights , the rectangles , and N are arbitrarily chosen. 

This raw feature set is (almost) infinitely large. For practical 

reasons, it is reduced as follows: 
         Fig 1: Example of an upright and 45° rotated rectangle. 

 

1. Only weighted combinations of pixel sums of two  

rectangles  are considered. 

2. The weights have opposite signs, and are used to 

compensate for the difference in area size between the 

two rectangles. 

3. The features mimic haar -like features and early 

features of the human visual pathway such as center-

surround and directional responses. 

These restrictions lead us to the 14 feature prototypes shown in  

Figure 2: Four edge features, eight line features, and two center-

surround features, and a special diagonal line feature. These 

prototypes are scaled independently in vertical and horizontal 

direction in order to generate a rich, over-complete set of 

features. Note that the line features can be calculated by two 

rectangles only. Hereto it is assumed that the first rectangle 

encompasses the black and white rectangle and the second 

rectangle represents the black area.  

         In our experiments the additional features significantly 

enhanced the expressional power of the learning system and 

consequently improved the performance of the object detection 

system. This is especially true if the object under detection 

exhibit diagonal structures such as it is the case for many brand 

logos. 

 
Fig 2:  Feature prototypes of simple haar-like and center-surround    
features. Black areas have negative and white areas positive weights. 

 

 

  A. Number of Features. 

The number of features derived from each prototype is quite 

large and differs from prototype to prototype and can be 

calculated as follows. Let and be the maximum scaling factors 

in x and y direction. An upright feature of size wxh then 

generates XY(W+1-w(X+1)/2)(H+2-h(Y+1)/2) features 

for an image of size WxH, while a rotated feature generates 

XY(W+1-z(X+1)/2)(H+1- z(Y+1)/2) with z=w+h. The number of 

features for a window size of 24x24 totals to 117,941. 

 

 

 B. Fast Feature Computation. 



 All features can be computed very fast in constant time for any 

size by means of two auxiliary images. For upright rectangles 

the auxiliary image is the Summed Area Table SAT(x, y) 

SAT(x, y) is defined as the sum of the pixels of the upright 

rectangle ranging from the top left corner at (0,0) to the bottom 

right corner at (x,y)  

  

 

 

It can be calculated with one pass over all pixels from left to 

right and top to bottom by means of  SAT(x, y) = SAT(x, y – 1) 

+ SAT(x – 1, y) + I(x, y) – SAT(x – 1, y – 1)  with SAT(–1, y) 

= SAT(x, –1) = SAT(–1, –1) = 0. From this the pixel sum of 

any upright rectangle r = (x, y, w, h, 0) can be determined 

 

RecSum(r) = SAT(x – 1, y – 1) + SAT(x + w – 1, y + h – 1) 

– SAT(x – 1, y + h – 1) – SAT(x + w – 1, y – 1) 

 

 For 45° rotated rectangles the auxiliary image is the Rotated 

Summed Area Table RSAT(x, y). It is defined as the sum of the 

pixels of a 45°  rotated rectangle with the bottom most corner at 

(x,y) and extending upwards till the boundaries of the image 

 

 

 

 

It can be calculated also in one pass from left to right and top to 

bottom over all pixels by 

 

RSAT(x, y) =    RSAT(x – 1, y – 1)+RSAT(x + 1, y – 1)(–RSATx, 

y   – 2) + I(x, y) + I(x, y – 1) 

 

With RSAT(-1,y)=RSAT(x,-1)=RSAT(x,-2)=RSAT(-1,-1)=RSAT(-

1,-2)=0. From this the pixel sum of any rotated rectangle  

r = (x, y, w, h, 45°) can be determined by 4 table 

lookups: 

RecSum(r) = RSAT(x – h + w, y + w + h – 1) + RSAT(x, y – 1) 

– RSAT(x – h, y + h – 1) – RSAT(x + w, y + w – 1) 

 
C. Fast Lighting Correction. 

The special properties of the haar-like features also enable fast 

contrast stretching of the form I(x, y) = (I(x, y) – μ) ⁄ (cσ) 

c ∈ R+ . μ can easily be determined by means of SAT(x,y). 

Computing , however, involves the sum of squared pixels. It can 

easily be derived by calculating a second set of SAT and RSAT 

auxiliary images for I2(x, y) .Then, calculating  σ for any 

window requires only 4 additional  table  lookups. 

                          

III.  (STAGE) CLASSIFIER 

We use boosting as our basic classifier. Boosting is a powerful 

learning concept. It combines the performance of many "weak" 

classifiers to produce a powerful 'committee'. A weak classifier 

is only required to be better than chance, and thus can be very 

simple and computationally inexpensive. Many of them smartly 

combined, however, result in a strong classifier, which often 

outperforms most 'monolithic' strong classifiers 'such as SVMs 

and Neural Networks. Different variants of boosting are known 

such as Discrete Adaboost, Real AdaBoost, and Gentle 

AdaBoost . All of them are identical with respect to 

computational complexity from a classification perspective, but 

differ in their learning algorithm. All three are investigated in 

our experimental results 

 

 Fig3: (a) Summed Area Table (SAT) and (b) Rotated Summed Area 
Table (RSAT). Calculation scheme of the pixel sum of upright (c) and 
rotated (d) rectangles. 
 

Learning is based on N training examples (x1, y1),…, (xN, yN) 

with x ∈ Rk and  yi ∈ {–1, 1} . xi is a K-component vector. 

Each component encodes a feature relevant for the learning task 

at hand. The desired two-class output is encoded as –1 and +1. 

In the case of object detection, the input component xi  is one 

haar-like feature. An output of +1 and -1 indicates whether the 

input pattern does contain a complete instance of the object class 

of interest. 

 

A. Cascade of Classifiers 

A cascade of classifiers is a degenerated decision tree where at 

each stage a classifier is trained to detect almost all objects of 

interest (frontal faces in our example) while rejecting a certain 

fraction of the non-object patterns . For instance, in our case 

each stage was trained to eliminated 50% of the non-face 

patterns while falsely eliminating only 0.1% of the frontal face 

patterns; 20 stages were trained. Assuming that our test set is 

representative for the learning task, we can expect a false alarm 

rate about 0.520 ≈ 9.6e – 07 and a hit rate about . Each stage was 

trained using one out of the three Boosting variants. Boosting 

can learn a strong classifier based on a (large) set of weak 

classifiers by re-weighting the training samples. Weak 

classifiers are only required to be slightly better than chance. 

Our set of weak classifiers are all classifiers which use one 

feature from our feature pool in combination with a simple 

binary thresholding decision or which are small CART trees 

with up to 4 features. At each round of boosting, the feature-

based classifier is added that best classifies the weighted 

training samples. With increasing stage number the number of 

weak classifiers, which are needed to achieve the desired false 

alarm rate at the given hit rate, increases. 

 
 

V. EXPERIMENTAL RESULTS 
 

All experiments were performed on the complete CMU Frontal 
Face Test Set of 130 grayscale pictures with 510 frontal faces . 
A hit was declared if and only if 

• the Euclidian distance between the center of a detected and 

actual face was less than 30% of the width of the actual face as 

well as 
• the width (i.e., size) of the detected face was within ±50% of 
the actual face width. 
 



 

 
Input pattern classified as a non –object 

Fig4: Casecade of classifier with N stages. At each stage a classifier is 

trained to achieve a hit rate of h and a false alarm rate of f. 

 

Every detected face, which was not a hit, was counted as a false 

alarm. Hit rates are reported in percent, while the false alarms 

are specified by their absolute numbers in order to make the 

results comparable with related work on the CMU Frontal Face 

Test set. Except otherwise noted 5000 positive frontal face 

patterns and 3000 negative patterns filtered by stage 0 to n-1 

were used to train stage n of the cascade classifier. The 5000 

positive frontal face patterns were derived from 1000 original 

face patterns by random rotation about ±10 degree, random 

scaling about ±10%, random mirroring and random shifting up 

to ±1 pixel. Each stage was trained to reject about half of the 

negative patterns, while correctly accepting 99.9% of the face 

patterns. A fully trained cascade consisted of 20 stages.  

 

During detection, a sliding window was moved pixel by pixel 

over the picture at each scale. Starting with the original scale, 

the features were enlarged by 10% and 20%, respectively (i.e., 

representing a rescale factor of 1.1 and 1.2, respectively) until 

exceeding the size of the picture in at least one dimension. Often 

multiple faces are detect at near by location and scale at an 

actual face location. Therefore, multiple nearby detection results 

were merged. Receiver Operating Curves (ROCs) were 

constructed by varying the required number of detected faces 

per actual face before merging into a single detection result.  

 

A. Feature  Scaling. 

 Any multi-scale image search requires either rescaling of the 

picture or the features. One of the advantage of the Haar-like 

features is that they can easily be rescaled. Independent of the 

scale each feature requires only a fixed number of look-ups in 

the sum and squared sum auxiliary images. These look-ups are 

performed relative to the top left corner and must be at integral 

positions. Obviously, by fractional rescaling the new correct 

positions become fractional. A plain vanilla solution is to round 

all relative look-up positions to the nearest integer position. 

However, performance may degrade significantly, since the 

ratio between the two areas of a feature may have changed 

significantly compared to the area ratio at training due to 

rounding. One solution is to correct the weights of the different 

rectangle sums so that the original area ratio between them for a 

given haar-like feature is the same as it was at the original size.  

 

B .Comparison  Between  Different Boosting Algorithms.  

We compared three different boosting algorithms: Discrete 

Adaboost, Real Adaboost, and Gentle Adaboost. Three 20- 

stage cascade classifiers were trained with the respective 

boosting algorithm using the basic feature set (i.e., features 1a, 

1b, 2a, 2c, and 4a of Figure 2) and stumps as the weak 

classifiers. As can be seen from Figure 5, Gentle Adaboost 

outperformed the other two boosting algorithm, despite the fact 

that it needed on average fewer features. For instance, at a an 

absolute false alarm rate of 10 on the CMU test set, RAB 

detected only 75.4% and DAB only 79.5% of all frontal faces, 

while GAB achieved 82.7% at a rescale factor of 1.1. Also, the 

smaller rescaling factor of 1.1 was very beneficial if a very low 

false alarm rate at high detection performance had to be 

achieved. At 10 false alarms on the CMU test set, GAB 

improved from 68.8% detection rate with rescaling factor of 1.2 

to 82.7% at a rescaling factor of 1.1. Table 1 shows in the 

second column (nsplit =1) the average number of features 

needed to be evaluated for 

 

 
 
Figure 5: Performance comparison between identically trained cascades 
with 3 different boosting algorithms using the basic feature set and 
stumps as weak classifiers. 
 

background patterns by the different classifiers. As can be seen 

GAB is not only the best, but also the fastest classifier. 

Therefore, we only investigate a rescale scaling factor 1.1 and 

GAB in the subsequent experiments 

 
Table 1: Avg. # of features evaluated per background pattern at a pattern     
size of 20x20 

 
. 
 

C. Input Pattern Size 

Many different input pattern sizes have been reported in related 

work on face detection ranging from 16x16 up to 32x32. 

However, none of them have systematically investigated the 

effect of the input pattern size on detection performance. As our 

experiments show for faces an input pattern size of 20x20 

achieves the highest hit rate at an  absolute false alarms 



between 5 and 100 on the CMU Frontal Face Test Set . Only for 

less than 5 false alarms, an input pattern size of 24x24 worked 

better. 

 

D. Basic vs. Extended Haar-like Features.  

Two face detection systems were trained: One with the basic 

and one with the extended haar-like feature set. On average the 

false alarm rate was about 10% lower for the extended haar-like 

feature set at comparable hit rates. . At the same time the 

computational complexity was comparable. The average number 

of features evaluation per patch was about 31. These results 

suggest that although the larger haar-like feature set usually 

complicates learning, it was more than paid of by the added 

domain knowledge. In principle, the center surround feature 

would have been sufficient to approximate all other features, 

however, it is in general hard for any machine learning 

algorithm to learn joint behavior in a reliable way. 

 

CONCLUSION 
Our experimental results suggest that 20x20 is the optimal input 

pattern size for frontal face detection. In addition, they show that 

Gentle Adaboost outperforms Discrete and Real Adaboost. 

Logitboot could not be used due to convergence problem on 

later stages in the cascade training. It is also beneficial not just 

to use the simplest of all tree classifiers, i.e., stumps, as the basis 

for the weak classifiers, but representationally more powerful 

classifiers such as small CART trees, which can model second 

and/or third order dependencies. We also introduced an 

extended set of haar-like features. Although frontal faces exhibit 

little diagonal structures, the 45 degree rotated features  

increased the accuracy. In practice, the have observed that the 

rotated features can boost detection performance if the object 

under detection exhibit some diagonal structures such as many 

brand logos. 
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