

A New Delegating Auditing Task to

TPA for Storage Correctness and

Privacy in Cloud

Lakshmanarao Simhadri
 #1

, Rajendra Kumar Ganiya
*2

M.Tech Scholar
#1

, Professor & HOD
*2

Department of Computer Science & Engineering,

Sri Sivani College of Engineering, Chilkapalem,

Etcherla Mandal, Srikakulam District.532402.

Abstract

Cloud Computing is one of the recent

attraction in almost all types of business

environments, where it is used for storing a lot of

individual private data on to a remote systems. As

the data is always stored remotely, we can’t able to

give guarantee whether the data was safe or it have

been misused. Cloud means collection of storage

servers maintained by the cloud service provider

which minimizes investment cost for individual

users and organizations. It providing on-demand

self-service, resource pooling, rapid elasticity and

measured service. But users are worrying about their

data stored in untrusted cloud servers. For that

introducing third-party auditor along with privacy

preserving public auditing technique which audit,

verifies and provides privacy of user’s data in cloud.

In this paper, we propose a secure cloud storage

system supporting privacy-preserving public

auditing. We further extend our result to enable the

TPA to perform audits for multiple users

simultaneously and efficiently. Extensive security

and performance analysis show the proposed

schemes are provably secure and highly efficient.

Keywords

Cloud Computing, Data Storage, Privacy-

Preserving, Public Auditability, Cryptographic

Protocols

1. Introduction

Cloud storage denotes a family of

increasingly popular on-line services for archiving,

backup, and even primary storage of files. Amazon

S3 is a well-known example. Cloud-storage

providers offer users clean and simple file-system

interfaces, abstracting away the complexities of

direct hardware management. As a standalone tool

for testing file retrievability against a single server,

though, a POR is of limited value.1 Detecting that a

file is corrupted is not helpful if the file is

irretrievable and thus the client has no recourse.

Thus PORs are mainly useful in environments where

F is distributed across multiple systems, such as

independent storage services. A POR uses file

redundancy within a server for verification. In a

second, complementary approach, researchers have

proposed distributed protocols that rely on queries

across servers to check file availability.

© 2014 JCT. All Rights Reserved 124

Journal of Computing Technologies (2278 – 3814) / # 124 / Volume 3 Issue 10

Strong File-Intactness Assurance:

HAIL enables a set of servers to prove to a

client via a challenge-response protocol that a stored

file F is fully intact—more precisely, that the client
can recover F with overwhelming probability.

Low Overhead:
The per-server computation and

bandwidth required for HAIL is comparable to that

of previously proposed PORs. Apart from its use of

a natural file sharing across servers, HAIL improves

on PORs by eliminating check values and reducing

within-server file expansion

Strong Adversarial Model:

HAIL protects against an adversary that is

active, i.e., can corrupt servers and alter file blocks
and mobile, i.e., can corrupt every server over time.

2. Related Work

 In this section we will describe the assumptions

and background knowledge that is used for

developing the new auditing method for cloud data

storage.

2.1 The System Model

Ateniese et al. [1] are the first to consider

public auditability in their ―provable data

possession‖ (PDP) model for ensuring possession of

data files on untrusted storages. They utilize the

RSA-based homomorphic linear authenticators for

auditing outsourced data and suggest randomly

sampling a few blocks of the file. However, among

their two proposed schemes, the one with public

auditability exposes the linear combination of

sampled blocks to external auditor. When used

directly, their protocol is not provably privacy

preserving, and thus may leak user data information

to the external auditor. Juels et al. [2] describe a

―proof of retrievability‖ (PoR) model, where spot-

checking and error-correcting codes are used to

ensure both ―possession‖ and ―retrievability‖ of data

files on remote archive service systems. However,

the number of audit challenges a user can perform is

fixed a priori, and public auditability is not

supported in their main scheme. Although they

describe a straightforward Merkle-tree construction

for public PoRs, this approach only works with

encrypted data. Later, Bowers et al. [3] propose an

improved framework for POR protocols that

generalizes Juels’ work. Dodis et al. [4] also give a

study on different variants of PoR with private

auditability. Shacham and Waters [5] design an

improved PoR scheme built from BLS signatures [6]

with proofs of security in the security model defined

in [7]. Similar to the construction in [8], they use

publicly verifiable homomorphic linear

authenticators that are built from provably secure

BLS signatures. Based on the elegant BLS

construction, a compact and public verifiable

scheme is obtained.

In other related work, Sebe et al. [9]

thoroughly study a set of requirements which ought

to be satisfied for a remote data possession checking

protocol to be of practical use. Their proposed

protocol supports unlimited times of file integrity

verifications and allows preset tradeoff between the

protocol running time and the local storage burden at

the user.

2.2 Design Goals

To enable privacy-preserving public

auditing for cloud data storage under the

© 2014 JCT. All Rights Reserved 125

Journal of Computing Technologies (2278 – 3814) / # 125 / Volume 3 Issue 10

aforementioned model, our protocol design should

achieve the following security and performance

guarantees.

1) Public Auditability: to allow TPA to verify

the correctness of the cloud data on demand without

retrieving a copy of the whole data or introducing

additional online burden to the cloud users.

2) Storage Correctness: to ensure that there

exists no cheating cloud server that can pass the

TPA’s audit without indeed storing users’ data

intact.

3) Privacy-Preserving: to ensure that the TPA

cannot derive users’ data content from the

information collected during the auditing process.

4) Batch Auditing: to enable TPA with secure

and efficient auditing capability to cope with

multiple auditing delegations from possibly large

number of different users simultaneously.

5) Lightweight: to allow TPA to perform

auditing with minimum communication and

computation overhead.

3. Proposed Cloud Schemes

This section presents our public auditing

scheme which provides a complete outsourcing

solution of data – not only the data itself, but also its

integrity checking. We start from an overview of our

public auditing system and discuss two

straightforward schemes and their demerits. Then

we present our main scheme and show how to extent

our main scheme to support batch auditing for the

TPA upon delegations from multiple users.

3.1 Definition

A public auditing scheme consists of four

algorithms (KeyGen, SigGen, GenProof,

VerifyProof). KeyGen is a key generation algorithm

that is run by the user to setup the scheme. SigGen is

used by the user to generate verification metadata,

which may consist of MAC, signatures, or other

related information that will be used for auditing.

GenProof is run by the cloud server to generate a

proof of data storage correctness, while VerifyProof

is run by the TPA to audit the proof from the cloud

server.

Running a public auditing system consists

of two phases, Setup and Audit:

A) Setup Phase:

 The user initializes the public and secret

parameters of the system by executing KeyGen, and

pre-processes the data file F by using SigGen to

generate the verification metadata. The user then

stores the data file F and the verification metadata at

the cloud server, and deletes its local copy. As part

of pre-processing, the user may alter the data file F

by expanding it or including additional metadata to

be stored at server.

B) Audit Phase:

The TPA issues an audit message or

challenge to the cloud server to make sure that the

cloud server has retained the data file F properly at

the time of the audit. The cloud server will derive a

response message from a function of the stored data

file F and its verification metadata by executing

GenProof. The TPA then verifies the response via

VerifyProof.

Our framework assumes the TPA is

stateless, which is a desirable property achieved by

our proposed solution. It is easy to extend the

framework above to capture a stateful auditing

system, essentially by spliting the verification

metadata into two parts which are stored by the TPA

and the cloud server respectively. Our design does

not assume any additional property on the data file.

If the user wants to have more error-resiliency,

he/she can always first redundantly encodes the data

file and then uses our system with the data file that

has error-correcting codes integrated.

3.2 Detailed Explanation of Algorithm

Steps

The following are the main steps of

algorithm that are explained below:

© 2014 JCT. All Rights Reserved 126

Journal of Computing Technologies (2278 – 3814) / # 126 / Volume 3 Issue 10

1. The user blinds each file block data before

file distribution k is the secret key for data

vector is generated.

2. Based on the blinded data vector, the User

generates k parity vector via the secret

matrix P.

3. The user calculates the ith token for server

j.

4. The user sends the token secret matrix P,

permutation and challenge key Kmaster key,

and kchal to TPA for auditing delegation.

The blinding values in the servers are not taken

by TPA response of the server are verified directly.

As TPA does not know the secret blinding key there

is no way for TPA to learn the data content

information during auditing process. Thus the

privacy-preserving third party auditing is achieved.

Fig.2: The privacy-preserving public auditing

protocol

Fig.3: The Setup and Audit Phase in proposed

Model

4. Implementation Modules

Implementation is the stage where the

theoretical design is automatically converted into

practically by dividing this into various modules.

We have implemented the current application in

Java Programming language with JEE as the main

interface for developing the proposed application

with Front End as HTML, JSP Pages and Back end

as MY SQL data base for storing and retrieving the

records. Our proposed application is divided into

following 4 modules. They are as follows:

a) Public audit ability for storage

correctness assurance

b) Dynamic data operation support

c) Block less verification

d) Dynamic Data Operation with

Integrity Assurance

e) Data Modification

f) Batch Auditing for Multi-client Data:

a) Public audit ability for storage

correctness assurance

In this module, to allow anyone, the

clients who originally stored the file on cloud

servers, to have the capability to verify the

correctness of the stored data on demand.

b) Dynamic data operation support

To allow the clients to perform block-level

operations on the data files while maintaining the

same level of data correctness assurance. The

design should be as efficient as possible so as to

ensure the seamless integration of public

auditability and dynamic data operation support.

c) Blockless Verification

No challenged file blocks should be

retrieved by the verifier (e.g., TPA) during

verification process for efficiency concern.

© 2014 JCT. All Rights Reserved 127

Journal of Computing Technologies (2278 – 3814) / # 127 / Volume 3 Issue 10

d) Dynamic Data Operation with

Integrity Assurance

Now we show how our scheme can

explicitly and efficiently handle fully dynamic data

operations including data modification (M), data

insertion (I) and data deletion (D) for cloud data

storage. Note that in the following descriptions, we

assume that the file F and the signature _ have

already been generated and properly stored at

server. The root metadata R has been signed by the

client and stored at the cloud server, so that anyone

who has the client’s public key can challenge the

correctness of data storage.

e) Data Modification

We start from data modification, which is

one of the most frequently used operations in cloud

data storage. A basic data modification operation

refers to the replacement of specified blocks with

new ones. At start, based on the new block the client

generates the corresponding signature. The client

signs the new root metadata R′ by sigsk(H(R′)) and

sends it to the server for update. Finally, the client

executes the default integrity verification protocol. If

the Output is TRUE, delete sigsk(H(R′)),and

generate duplicate file.

f) Batch Auditing for Multi-client

Data

As cloud servers may concurrently handle

multiple verification sessions from different

clients, given K signatures on K distinct data files

from K clients, it is more advantageous to

aggregate all these signatures into a single short

one and verify it at one time. To achieve this goal,

we extend our scheme to allow for provable data

updates and verification in a multi-client system.

The signature scheme allows the creation of

signatures on arbitrary distinct messages.

Moreover, it supports the aggregation of multiple

signatures by distinct signers on distinct messages

into a single short signature, and thus greatly

reduces the communication cost while providing

efficient verification for the authenticity of all

messages.

5. Conclusion

In this paper, we propose a privacy-

preserving public auditing system for data storage

security in Cloud Computing. We utilize the

homomorphic linear authenticator and random

masking to guarantee that the TPA would not learn

any knowledge about the data content stored on the

cloud server during the efficient auditing process,

which not only eliminates the burden of cloud user

from the tedious and possibly expensive auditing

task, but also alleviates the users’ fear of their

outsourced data leakage. Considering TPA may

concurrently handle multiple audit sessions from

different users for their outsourced data files, we

further extend our privacy-preserving public

auditing protocol into a multi-user setting, where the

TPA can perform multiple auditing tasks in a batch

manner for better efficiency. Extensive analysis

shows that our schemes are provably secure and

highly efficient.

6. References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, ―Provable Data

Possession at Untrusted Stores,‖ Proc. 14th ACM Conf.
Computer and Comm. Security (CCS ’07), pp. 598-609,

2007.

[2] A. Juels and J. Burton, S. Kaliski, ―PORs: Proofs of

Retrievability for Large Files,‖ Proc. ACM Conf.

Computer and Comm. Security (CCS ’07), pp. 584-597,

Oct. 2007.

[3] K.D. Bowers, A. Juels, and A. Oprea, ―Proofs of

Retrievability: Theory and Implementation,‖ Proc. ACM

Workshop Cloud Computing Security (CCSW ’09), pp. 43-
54, 2009.

[4] Y. Dodis, S.P. Vadhan, and D. Wichs, ―Proofs of
Retrievability via Hardness Amplification,‖ Proc. Theory

of Cryptography Conf. Theory of Cryptography (TCC), pp.

109-127, 2009.

[5] H. Shacham and B. Waters, ―Compact Proofs of

Retrievability,‖ Proc. Int’l Conf. Theory and Application

© 2014 JCT. All Rights Reserved 128

Journal of Computing Technologies (2278 – 3814) / # 128 / Volume 3 Issue 10

of Cryptology and Information Security: Advances in

Cryptology (Asiacrypt), vol. 5350, pp. 90-107, Dec. 2008.

[6] D. Boneh, B. Lynn, and H. Shacham, ―Short Signatures

from the Weil Pairing,‖ J. Cryptology, vol. 17, no. 4, pp.
297-319, 2004.

[7] P. Mell and T. Grance, ―Draft NIST Working
Definition of Cloud Computing,‖

http://csrc.nist.gov/groups/SNS/cloudcomputing/

index.html, June 2009.

[8] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-

Preserving Public Auditing for Storage Security in Cloud
Computing,‖ Proc. IEEE INFOCOM ’10, Mar. 2010.

[9] F. Sebe, J. Domingo-Ferrer, A. Martı´nez-Balleste, Y.
Deswarte, and J.-J. Quisquater, ―Efficient Remote Data

Possession Checking in Critical Information

Infrastructures,‖ IEEE Trans. Knowledge and Data Eng.,
vol. 20, no. 8, pp. 1034-1038, Aug. 2008.

7. About the Authors

Lakshmanarao Simhadri

is currently pursuing his 2

Years M.Tech (CSE) in

Computer Science and

Engineering at Sri Sivani

College of Engineering,

Chilkapalem, Etcherla

Mandal, Srikakulam District.

His area of interests includes

Networks and Cloud

Computing.

Rajendra Kumar Ganiya
is currently working as a

Professor and Head of

Department with Dept. of

CSE at Sri Sivani College of

Engineering, Chilkapalem,

Etcherla Mandal, Srikakulam

District. His research interests

include Cognitive Science.

© 2014 JCT. All Rights Reserved 129

Journal of Computing Technologies (2278 – 3814) / # 129 / Volume 3 Issue 10

http://csrc.nist.gov/groups/SNS/cloudcomputing/

