

Web Stuggler : A New Tool for

Mining Web Pages based on Page

Traffic over Internet

M Sri Vidya
#1

, P. Srinivas
*2

 , CH .Srinivas Reddy
*3

#1
M.Tech, Department of information Technology, Vignan’s Institute of

Information Technology, JNTU-KAKINADA, Andhra Pradesh, India
#1

Srividya.mutha@gmail.com

*2
 Assistant Professor, Department of information Technology, Vigna

n
’s Institute

of Information Technology, Visakhapatnam, Andhra Pradesh, India
*2

Srinivasp3@gmail.com

*3

Assistant Professor, Department of information Technology, Vignan’s Institute

of Information Technology, Visakhapatnam, Andhra Pradesh, India
*3

Srinivasreddyviit@gmail.com

Abstract

A Web Stuggler is a program in internet,

which automatically traverses the web by

downloading documents and following links from

page to page. They are mainly used by web search

engines to gather data for indexing. Other possible

applications include page validation, structural

analysis and visualization; update notification,

mirroring and personal web assistants/agents etc.

Web Search/Web Crawlers is also known as spiders,

robots, worms etc. A Search resides on a single

machine. The Search simply sends HTTP requests

for documents to other machines on the Internet, just

as a web browser does when the user clicks on links.

All the Search really does is to automate the process

of following links. Web Searching speed is

governed not only by the speed of one’s own

Internet connection, but also by the speed of the sites

that is to be searched. Especially if one is a

Searching site from multiple servers, the total

Searching time can be significantly reduced, if many

downloads are done in parallel. This work

implements the “Breadth First Searching” algorithm,

a refined version of one of the first dynamic Web

search algorithm. By conducting several

experiments on various types of websites

comprising of educational websites like university,

colleges, schools, public sites, booking sites,

banking sites and so on. We finally got a

conclusion that by using this proposed application or

web crawler tool we can able to get the web site

rank based on individual page traffic not based on

overall page ranking. By this we clearly state that his

proposed tool is mainly used by website

administrators in order to reduce the workload that

was been caused by participating users, by other

users.

© 2014 JCT. All Rights Reserved 174

Journal of Computing Technologies (2278 – 3814) / # 174 / Volume 3 Issue 10

mailto:Srividya.mutha@gmail.com
mailto:Srinivasp3@gmail.com
mailto:Srinivasreddyviit@gmail.com

Keywords

Web Search,--Breadth First Search,

Robots, Web Agents, Visualization, Page Validation

1. Introduction

The economic and cultural importance of

the web has guaranteed considerable academic

interest in it, not only for affiliated technologies, but

also for its content. Research into web pages

themselves has been motivated by attempts to

provide improved information retrieval tools such as

search engines, but also by the desire to know what

is available, how it is structured and to determine its

relationship with other meaningful human activities.

The advanced facilities available in search engines

such as AltaVista and Info seek, but their use has

raised questions of reliability that have led to the

creation of a specialist web spider/analyzer to

produce the raw data by direct Searching and

analysis of the sites concerned. Information

scientists and others wishing to perform data mining

on large numbers of web pages will require the

services of a web Search or web-Search-based tool,

either individually or collaboratively.

1.1 Fundamentals of a Web Search

Despite the numerous applications for Web

Search, at the core they are all fundamentally the

same. Following is the process by which Web

Search work:

 1. Download the Web page.

 2. Parse through the downloaded page and

retrieve all the links.

 3. For each link retrieved, repeat the process.

Now let’s look at each step of the process in

more detail.

 In the first step, a Web Search takes a

URL and downloads the page from the Internet at

the given URL. Oftentimes the downloaded page is

saved to a file on disk or put in a database. Saving

the page allows the Search or other software to go

back later and manipulate the page, be it for

indexing words (as in the case with a search engine)

or for archiving the page for use by an automated

archived.

In the second step, a Web Search parses

through the downloaded page and retrieves the links

to other pages. Each link in the page is defined with

an HTML anchor tag similar to the one shown here:

<A

HREF="http://www.host.com/directory/file

.html">Link

After the Search has retrieved the links

from the page, each link is added to a list of links to

be searched.

The third step of Web Searching repeats

the process. All Search work in a recursive or loop

fashion, but there are two different ways to handle it.

In our project the Links can be Searched using

breadth-first manner.

2. Literature Survey

 In this section we will describe the assumptions

that are used in the proposed paper.

2.1 Main Motivation

The economic and cultural importance of

the web has guaranteed considerable academic

interest in it, not only for affiliated technologies, but

also for its content. Research into web pages

themselves has been motivated by attempts to

provide improved information retrieval tools such as

search engines, but also by the desire to know what

is available, how it is structured and to determine its

relationship with other meaningful human activities.

The advanced facilities available in search engines

such as AltaVista and Info seek, but their use has

raised questions of reliability that have led to the

creation of a specialist web spider/analyzer to

produce the raw data by direct Searching and

© 2014 JCT. All Rights Reserved 175

Journal of Computing Technologies (2278 – 3814) / # 175 / Volume 3 Issue 10

analysis of the sites concerned. Information

scientists and others wishing to perform data mining

on large numbers of web pages will require the

services of a web Search or web-Search-based tool,

either individually or collaboratively.

The potential power of web mining is

illustrated by one study that used a computationally

expensive technique in order to extract patterns from

the web and was powerful enough to find

information in individual web pages that the authors

would not have been aware of .A second illustration

is given by the search engine Google, which uses

mathematical calculations on a huge matrix in order

to extract meaning from the link structure of the

web. The development of an effective paradigm for

a web-mining Search is, therefore, a task of some

importance.

2.2 Mechanism

The proposed ranking model can be used

as a web crawler, which is a program that

automatically traverses the web by downloading

documents and following links from page to page.

They are mainly used by web search engines to

gather data for indexing.

Other possible applications include:-

 Page validation

 Structural analysis and visualization

 Update notification

 Mirroring and personal web

assistants/agents etc.

Web crawlers are also known as spiders, robots,

worms etc.

“RANKING MODEL” which actually searches

the data at the time when the URL is issued. While

this “RANKING MODEL” does not scale up, it

guarantees valid results for dynamic search. It is

preferable to static search for discovering

information in small and dynamic sub Webs.

Finally, “ranking adaptability” measurement is

proposed to quantitatively estimate if an existing

ranking model can be adapted to a new domain with

several experiments on various sites. By using our

proposed ranking model using SVM, we get the

following advantages:

 The proposed RA-SVM can better utilize

by both the auxiliary models and target

domain labeled queries to learn a more

robust ranking model for the target

domain data.

 Domain-specific features can steadily

further boost the model adaptation, and

RA- SVM-SR is comparatively more

robust than RA-SVM- MR.

 Adaptability measurement is consistent to

the utility of the auxiliary model, and it is

deemed as an effective criterion for the

auxiliary model selection

The emphasis in requirements analysis is

on identifying what is needed from the system, not

how the system will achieve its goals. This task is

complicated by the fact that there are often at least

two parties involved in software development-a

client and a developer. The developer usually does

not understand the client’s problem domain and the

client does not understand the issues involved in the

system software systems developed by the

developers. Hence causes a communication gap

between them.

This communication gap is bridged during

the analysis. This analysis phase ends with a

document describing all the requirements called as

SRS (Software Requirements Specification).

There are two major activities involved in

this phase, Problem understanding and requirement

specification. In problem analysis, the analyst has to

understand the problem and its context. Such

analysis typically requires through understanding of

the existing system, parts which have to be

automated. A clear understanding is needed of the

important data entities in the system, major centers

where action is taken, the purpose of the different

actions that are performed and the inputs and

outputs.

© 2014 JCT. All Rights Reserved 176

Journal of Computing Technologies (2278 – 3814) / # 176 / Volume 3 Issue 10

3. Proposed Algorithm and

Methodologies

 In this paper we are going to implement BFS

(Breadth First Search) Algorithm for implementing

the search traversal technique and finally the sorted

URLS will be placed in the order of BFS Hierarchy

where there will be no chance of repetance of visited

URL to be replaced once again in between the

searched URL’s.By using this BFS Algorithm for

identifying the crawled URL’s, all the URL’s will

get distinct rank in the privilege of web crawling. If

the same application is been used with DFS, we may

get in correct URL’s in the final output.

3.1 Breadth First Search (BFS)

Algorithm

Breadth First Search, Algorithm is an

uninformed search method that aims to expand and

examine all nodes of a graph systematically in

search of a solution. In other words, it exhaustively

searches the entire graph without considering the

goal until it finds it. It does not use a heuristic. The

BFS algorithm is used in order to build a major

search engine or a large repository such as the

Internet Archive, high-performance Search start out

at a small set of pages and then explore other pages

by following links in a “breadth first-like” fashion.

In reality, the web pages are often not traversed in a

strict breadth-first fashion, but using a variety of

policies, e.g., for pruning Search’s inside a web site,

or for Searching more important pages first.

The working principle of BFS Algorithm

is it will crawl the root URL first and then from that

root url it will search for the child url’s that are

linked directly with the root node and finally all the

visited child url’s will be entered into FIFO queue

and finally once the url is visited it will be marked

as visited and changes its status to the visited and

the pointer will be keep on crawling new url’s

which was not yet repeated. During this crawling if

already visited URL is again visited it will not

consider that once again the same url into the list.

Steps for BFS Algorithm are:

1) Put the starting node (the root node) in the

queue.

2) Pull a node from the beginning of the queue

and examine it.

a) If the searched element is found in this
node, quit the search and return a result.

b) Otherwise push all the (so-far-

unexamined) successors of this node into

the end of the queue, if there are any.

3) If the queue is empty, every node on the graph

has been examined -- quit the search and return

"not found".

4) Repeat from step 2.

3.2 Pseudo code for BFS Algorithm

The below pseudo code clearly represents

the BFS algorithm procedure and its working

principle.

Pseudo-Code for BFS Algorithm

function breadthFirstSearch (Start, Goal) {

 enqueue(Queue,Start)

 while notEmpty(Queue) {

 Node := dequeue(Queue)

 if Node = Goal {

 return Node // the code below does not get
executed

 }

 for each Child in Expand(Node) {

 if notVisited(Child) {

 setVisited(Child)

 enqueue(Queue, Child)

 } } }

}

© 2014 JCT. All Rights Reserved 177

Journal of Computing Technologies (2278 – 3814) / # 177 / Volume 3 Issue 10

4. Implementation Modules

based on Role

The following are the roles that are

performed during the process of crawling the web

pages based on individual page traffic. Here in this

proposed tool we have two roles, one role is played

by user and one role is played by Google server.

4.1 Google API Role Flow Chart

In this Google API’s Role, it shows that

operations performed by the Google API after

accepting the URL from the user. The default

actions are specified by the Ranking Model Web

Crawler which is clearly shown in figure 1.

Figure 1. Role of Google API in our application

4.2 Role of User and his Flow of

Events

In this User Role, it shows that the

operations performed by the user after accepting the

appropriate URL details from Google API’s. The

default actions which should be performed by the

user is specified by the Ranking Model Web

Crawler which is clearly shown in figure 2.

Figure 2. Role of User in our application

4.3 Main Source Code for Current

Application

Here we will discuss the main source code

for the proposed application implementation. For

developing this application we use Java Swings as a

front end interface and we are not using any back

end data base for implementing this application. For

implementing this application we need a google

connection because all the searched urls traverse

through internet and then come back to the user

interface and displays as an output in the filtered

order based on page traffic.

Main Logic Part for connecting URL

to Internet

public class URLConnect extends Thread

 {

 String URLPass;

 StringBuffer str;

 URLConnect(String URLName)

 {

 try

 {

 URLPass=URLName;

© 2014 JCT. All Rights Reserved 178

Journal of Computing Technologies (2278 – 3814) / # 178 / Volume 3 Issue 10

 URL url =

new URL(URLName);

 HttpURLConnection connection =

(HttpURLConnection) url.openConnection();

 connection.connect();

 if(connection.getResponseCode()!=200)

 {

 connection.disconnect();

 Furl++;

 UpdateStatus("Disconnected from

"+URLName);

UpdateResult("
"+URLName+": disconnected

");

if(control>=0)

 connOther();

 else

 {

 out();

 }

 }

 else

 {

 UpdateStatus("Connected to

"+URLName);

 BufferedReader in = new BufferedReader(

new

InputStreamReader(connection.getInputStream()));

 String line;

 str = new StringBuffer();

while((line=in.readLine())!=null)

 {

 str.append(line);

 }

 in.close();

 start();

 }

 } // end of try

catch(MalformedURLException murle)

 {

 UpdateStatus("Type with a valid protocol!

ex: http://www.sun.com");

progress.setIndeterminate(true);

 unlock();

 }

 catch(UnknownHostException

uhe)

 {

 UpdateStatus("URL not found! Check

whether you are connected to internet / IP could not

be determined");

progress.setIndeterminate(false);

 unlock();

 }

 catch(Exception e)

 {

 UpdateStatus("Error : "+e);

 if(control>=0)

 connOther();

 else

 {

 out();

 }

 } // end of catch

 } // end of URLConnect constructor

 public void run()

 {

 search(str,URLPass);

 }

 } // // end of URLConnect class

Logic Part for Searching the Web Pages

based on Page Usage Traffic

public void search(StringBuffer str,String urlPass)

 {

 progress.setValue(Clist);

 try

 {

 UpdateStatus("\nCrawling . . . "+urlPass);

 if(URLlist>1)

 UpdateResult("
Crawling .

. . "+urlPass);

© 2014 JCT. All Rights Reserved 179

Journal of Computing Technologies (2278 – 3814) / # 179 / Volume 3 Issue 10

 int j=0,sav=0,v=0,p=0,flag=1;

 long i=0,len=0;

 String sov="";

 len = str.length();

// saves the length of source code

 relative(str.toString());

 absolute(str.toString());

 if(control>=0)

 connOther();

 else

 out();

 }

 catch(Exception e)

 { UpdateStatus("Error :

"+e); out();

 } }

5. Experimental Results and

Description

For developing this web page extractor

tool based on page usage traffic, we use java

technology with front end User interface designed

with java Swings and back end is internet

connection for crawling the URL’s lively. The

below screen is the main interface for executing this

application which mainly contains a text area where

we need to enter the url what we want to search

.There was a button beside text box called as

“Crawl”, if you click on that button it will direct the

requested url to the google server and then return

back to the text area which is available in the results

of url’s crawled area.

Web Crawler Main Window

 In the above window we will also find

progress bar which is present below the window

which indicates the progress of the application. The

status bar what we have in the current application

indicates the status of the web crawler. The next

window clearly indicates the crawling of urls that

was processed by the specified URL.

Main Window after Crawling the

URL

 The above window crawls the URLs of

Vignan university website. The url’s will be crawled

based on page usage traffic.

© 2014 JCT. All Rights Reserved 180

Journal of Computing Technologies (2278 – 3814) / # 180 / Volume 3 Issue 10

6. Conclusion

 We have described the architecture

and implementation details of our Searching system.

Searching forms the backbone of applications that

facilitate Web information retrieval. The web Search

is designed using Breadth-first Searching, which

provides the highest page rankings. Itself capable of

searching a large collection of web sites by using

idle processing power and disk space. The testing of

the system has shown that it cannot operate fully

automatically for tasks that involve searching entire

web sites without an effective heuristic for

identifying duplicate pages.

7. Future Enhancement

 As this application can only crawl URL’s

in BFS fashion and it is failed in crawling SSL

protected pages. In future we may wish that these

limitations can be resolved and we may also crawl

the authenticated pages also from the web, so that

there will be no limitation present in the web crawler

over internet.

8. References

[1]. Herbert Schildt Java Complete Reference. Fifth

Edition.

[2]. Core Java 2: Volume I & II - Fundamentals By

Cay S. Horstmann, Gary Cornell

[3]. Java™ Tutorial, Third Edition: A Short Course

on the Basics By Mary Campione, Kathy Walrath,

Alison Huml

[4]. Data Mining Techniques By Arun K Pujari

[5]. Flippo Menczer, Gutam Pant, Padmini

Srinivasan, Searching the Web.

[6]. Pankaj Jalote, An Integrate Approach to

Software Engineering, 3rd Edition.

[7]. Searching the Web. Gautam Pant, Padmini

Srinivasan and Filippo Menczer3

[8].S. Chakrabarti. Mining the Web. Morgan

Kaufmann

[9].F. Menczer and R. K. Belew. Adaptive retrieval

agents: Internalizing local context and scaling up to

the Web. Machine Learning

[10]. J. Rennie and A. K. McCallum. Using

reinforcement learning to spider the Web

efficiently.Morgan Kaufmann, San Francisco, CA,

1999.

[11]. G. Salton and M.J. McGill. Introduction to

Modern Information Retrieval. McGraw-Hill, 1983.

[12].“Efficient Searching Through URL Ordering”,

Junghoo Cho, Hector Garcia-Molina, Lawrence

Page. 7th International Web Conference (WWW 98)

© 2014 JCT. All Rights Reserved 181

Journal of Computing Technologies (2278 – 3814) / # 181 / Volume 3 Issue 10

